Imperfections in metal halide perovskites, such as those induced by light exposure or thermal stress, compromise device performance and stability. A key challenge is immobilizing volatile iodine produced by iodide oxidation and regenerating impurities like elemental lead and iodine. Here, we address this by integrating a redox-active supramolecular assembly of nickel octaethylporphyrin into perovskite film, functioning as both an immobilizer and redox shuttle.
View Article and Find Full Text PDFTuning the strength of intramolecular electric field (IEF) in conjugated molecules has emerged as an effective approach to boost charge transfer. While direction manipulation of IEF would be a potential way that is still unclear. Here, we leverage the control of peripheral substituents of conjugated phthalocyanines to chemically tune the spatial orientation of IEF.
View Article and Find Full Text PDFThe space group of a crystal describes the symmetry and periodic arrangement of its structure. As the fundamental element in the structure, it plays a vital role in determining the physical and chemical properties of crystals. The investigation of crystal space group information allows for the prediction of material properties, thereby providing guidance for material design and synthesis to enhance their performance or functionality.
View Article and Find Full Text PDFHeterogeneous catalysts have attracted extensive attention among various emerging catalysts for their exceptional oxygen evolution reaction (OER) capabilities, outperforming their single-component counterparts. Nonetheless, the synthesis of heterogeneous materials with predictable, precise, and facile control remains a formidable challenge. Herein, a novel strategy involving the decoration of catalysts with CeO is introduced to concurrently engineer heterogeneous interfaces and adjust phase composition, thereby enhancing OER performance.
View Article and Find Full Text PDFGenerating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (g) is difficult due to usually unmatched electric transition dipole moment (μ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a "cascade cationic insertion" trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high g values reaching -2.3×10 without using any chiral inducers.
View Article and Find Full Text PDFPorphyrin/phthalocyanine compounds with fascinating molecular structures have attracted widespread attention in the field of solar cells in recent years. In this review, we focus on the pivotal role of porphyrin and phthalocyanine compounds in enhancing the efficiency of solar cells. The review seamlessly integrates the intricate molecular structures of porphyrins and phthalocyanines with their proficiency in absorbing visible light and facilitating electron transfer, key processes in converting sunlight into electricity.
View Article and Find Full Text PDFThe rational design of heterogeneous catalysts is crucial for achieving optimal physicochemical properties and high electrochemical activity. However, the development of new amorphous-crystalline heterostructures is significantly more challenging than that of the existing crystalline-crystalline heterostructures. To overcome these issues, a coordination-assisted strategy that can help fabricate an amorphous NiO/crystalline NiCeO (a-NiO/c-NiCeO) heterostructure is reported herein.
View Article and Find Full Text PDFModulating the surface charge transport behavior of hole transport materials (HTMs) would be as an potential approach to improve their hole mobility, while yet realized for fabricating efficient photovoltaic devices. Here, an oxygen bridged dimer-based monoamine Fe porphyrin supramolecule is prepared and doped in HTM film. Theoretical analyses reveal that the polaron distributed on dimer can be coupled with the parallel arranged polarons on adjacent dimers.
View Article and Find Full Text PDFCoordination polymers (CPs) have emerged as promising candidates for photocatalytic H production owing to their structural tailorability and functional diversity. However, the development of CPs with high energy transfer efficiency for highly efficient photocatalytic H production in a wide pH range still faces many challenges. Here we constructed a novel tube-like Pd(ii) coordination polymer with well-distributed Pd nanoparticles (denoted as Pd/Pd(ii)CPs) based on the coordination assembly of rhodamine 6G and Pd(ii) ions and further photo-reduction under visible light irradiation.
View Article and Find Full Text PDFSolid solution-oxide heterostructures combine the advantages of solid solution and heterojunction materials to improve electronic structure and optical properties by metal doping, and enhance charge separation and transfer in semiconductor photocatalysts by creating a built-in electric field. Nevertheless, the effective design and synthesis of these materials remains a significant challenge. Here, we develop a generally applicable strategy that leverages the transformable properties of metal-organic frameworks (MOFs) to prepare solid solution-oxide heterojunctions with controllable structural and chemical compositions.
View Article and Find Full Text PDFTypical wide-band gap cathode interlayer materials are difficulty in reducing interface recombination without limiting charge transport in perovskite solar cells (PSCs). Here, a lead-doped titanium-oxo cluster protected by S-containing ligands is introduced at the interface of perovskite and SnO . By in situ heating, the cluster is transformed into PbSO -PbTi O heterostructure.
View Article and Find Full Text PDFThe regulation of molecular structures of porphyrin-based photosensitizers is crucial for yielding the effective singlet oxygen as one of the efficient photocatalytic reactive oxidation species. Here, we select methoxy substitution as an electron donor to decorate the porphyrin rings. Introducing a series of metal ions into porphyrin centers further prepares the methoxy-substituted metalloporphyrins (MPs, M = Co, Ni, Cu, Zn), with the hope of modulating their molecular dipole moments and photocatalytic activity.
View Article and Find Full Text PDFPerovskite quantum dots (QDs) are promising as representative candidates to construct next-generation superior artificial light-harvesting systems (ALHSs). However, their high sensitivity to external environments, especially to water, imposes a stringent limitation for their actual implementation. Herein, by interface engineering and encapsulation with natural palygorskite (PAL), a water-resistant light-harvesting CsPbBr@PAL antenna was prepared.
View Article and Find Full Text PDFAromatic passivators, such as porphyrin, with large π-backbones have attracted considerable attention to boost the charge carrier in polycrystalline perovskite films, thus enabling the fabrication of efficient and stable perovskite solar cells (PSCs). However, they often self-assemble into supramolecules that probably influence the charge-transfer process in the perovskite grain boundary. Here, by doping a monoamine Cu porphyrin into perovskite films, two porphyrin-based self-assembled supramolecules were successfully prepared between perovskite grains.
View Article and Find Full Text PDFGrain boundary management is critical to the performance and stability of polycrystalline perovskite solar cells (PSCs), especially large-area devices. However, typical passivators are insulating in nature and limit carrier transport. Here, we design a supramolecular binder for grain boundaries to simultaneously passivate defects and promote hole transport across perovskite grain boundaries.
View Article and Find Full Text PDFThe development of highly sensitive and simple detection methods for cancer cells is an important challenge to achieve early cancer diagnosis and effective treatment. In this paper, folic acid (FA)-conjugated platinum (IV) methylene blue (MB) coordination polymers nanorods (denoted as FA-PtCPs NRs) were developed by the photochemical method. The structure of the PtCPs NRs was investigated using the meta-dynamics and genetic algorithms (MTD-GC) method, and it was found that the coordination bond was formed between platinum (IV) and N atoms of MB.
View Article and Find Full Text PDFRaman scattering provides stable narrow-banded signals that potentially allow for multicolor microscopic imaging. The major obstacle for the applications of Raman spectroscopy and microscopy is the small cross section of Raman scattering that results in low sensitivity. Here, we report a new concept of azo-enhanced Raman scattering (AERS) by designing the intrinsic molecular structures using resonance Raman and concomitant fluorescence quenching strategies.
View Article and Find Full Text PDFLow conductivity and hole mobility in the pristine metal phthalocyanines greatly limit their application in perovskite solar cells (PSCs) as the hole-transporting materials (HTMs). Here, we prepare a Ni phthalocyanine (NiPc) decorated by four methoxyethoxy units as HTMs. In NiPc, the two oxygen atoms in peripheral substituent have a modified effect on the dipole direction, while the central Ni atom contributes more electron to phthalocyanine ring, thus efficiently increasing the intramolecular dipole.
View Article and Find Full Text PDFIn this review, the development context and scientific research results of chiral surface plasmons (SPs) in recent years are classified and described in detail. First, the principle of chiral SPs is introduced through classical and quantum theory. Following this, the classification and properties of different chiral structures, as well as the superchiral near-field, are introduced in detail.
View Article and Find Full Text PDFArtemisinin and its derivatives are of great research value in biology. In this work, we study their chiral and optical properties. The multidimensional multifunction analysis method is used to analyze the linear and nonlinear optical processes (one-photon and two-photon absorption: OPA and TPA), electronic circular dichroism (ECD), and Raman optical activity (ROA) mechanisms under light excitation.
View Article and Find Full Text PDFIn this work, we theoretically investigate the structure and the transition characteristics of one- (OPA) and two-photon absorption (TPA) spectra of different length neutral and charged thiophene polymers. The effects and regulation of different charges on photoinduced charge transfer are discovered and their physical mechanisms are explained. We find that both the OPA and TPA spectra undergo a sizeable redshift after the charge is injected into the polymer, and the redshift after the positive charge injection is excellent.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2020
In this work, we use the visualization method to study their intramolecular electric-magnetic interactions and reveal the physical mechanism of their electronic transition to explain the cause of the opposite ECD spectrum orientations. Azaphilone A and B are two chiral molecules, due to their differing chirality, the electronic circular dichroism (ECD) spectra of bromophilone A and B are very different at 431 nm. Based on the two-step transition process, the charge-transfer characteristics of the corresponding two-photon excited states of the two chiral molecules are analysed in detail by calculating the photoinduced charge transfer and electron-hole coherence in the two-photon absorption (TPA) process.
View Article and Find Full Text PDFA series of stilbene derivatives have been constructed by modifying the stilbene systems with different H, CN, NH, NMe, and NO groups. In a vacuum, it was found that a redshift in the ultraviolet-visible spectrum occurred because of the enhancement of the donor/acceptor capabilities of this group, with the order of redshift being NO > NMe > CN > NH > H. For stilbene molecular systems, the peak of two-photon absorption (TPA) observed in the simulated spectra should be attributed to two transitions that are contributed by two excited states with similar energy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2020
In this work, the monomers and dimers of the Mobius ring were studied using density functional theory (DFT), symmetric matching perturbation theory (SAPT) and various excited state wave function analysis methods. The one-photon and two-photon absorption and their charge transfer excitation characteristics of the Mobius ring were qualitatively and quantitatively analyzed. The exchange-related induced super-exchange charge transfer, charge sequence transfer and local excitation-enhanced charge transfer were analyzed and discussed.
View Article and Find Full Text PDF