Background: Edwardsiella tarda causes acute symptoms with ascites in Japanese flounder (Paralichthys olivaceus) and is a major problem for China's aquaculture sector. Genomic selection (GS) has been widely adopted in breeding industries because it shortens generation intervals and results in the selection of individuals that have great breeding potential with high accuracy. Based on an artificial challenge test and re-sequenced data of 1099 flounders, the aims of this study were to estimate the genetic parameters of resistance to E.
View Article and Find Full Text PDFBackground: Currently, genomic prediction in cattle is largely based on panels of about 54k single nucleotide polymorphisms (SNPs). However with the decreasing costs of and current advances in next-generation sequencing technologies, whole-genome sequence (WGS) data on large numbers of individuals is within reach. Availability of such data provides new opportunities for genomic selection, which need to be explored.
View Article and Find Full Text PDFBackground: Genomic prediction is based on the accurate estimation of the genomic relationships among and between training animals and selection candidates in order to obtain accurate estimates of the genomic estimated breeding values (GEBV). Various methods have been used to predict GEBV based on population-wide linkage disequilibrium relationships (G IBS ) or sometimes on linkage analysis relationships (G LA ). Here, we propose a novel method to predict GEBV based on a genomic relationship matrix using runs of homozygosity (G ROH ).
View Article and Find Full Text PDFBackground: Genotyping accounts for a substantial part of the cost of genomic selection (GS). Using both dense and sparse SNP chips, together with imputation of missing genotypes, can reduce these costs. The aim of this study was to identify the set of candidates that are most important for dense genotyping, when they are used to impute the genotypes of sparsely genotyped animals.
View Article and Find Full Text PDFGenome-wide breeding value (GWEBV) estimation methods can be classified based on the prior distribution assumptions of marker effects. Genome-wide BLUP methods assume a normal prior distribution for all markers with a constant variance, and are computationally fast. In Bayesian methods, more flexible prior distributions of SNP effects are applied that allow for very large SNP effects although most are small or even zero, but these prior distributions are often also computationally demanding as they rely on Monte Carlo Markov chain sampling.
View Article and Find Full Text PDFBoth theoretical calculations and simulation studies have been used to compare and contrast the statistical power of methods for mapping quantitative trait loci (QTLs) in simple and complex pedigrees. A widely used approach in such studies is to derive or simulate the expected mean test statistic under the alternative hypothesis of a segregating QTL and to equate a larger mean test statistic with larger power. In the present study, we show that, even when the test statistic under the null hypothesis of no linkage follows a known asymptotic distribution (the standard being chi(2)), it cannot be assumed that the distribution under the alternative hypothesis is noncentral chi(2).
View Article and Find Full Text PDF