Extensive research has been conducted on visible-light and longer-wavelength infrared-light storage phosphors, which are utilized as promising rewritable memory media for optical information storage applications in dark environments. However, storage phosphors emitting in the deep ultraviolet spectral region (200-300 nm) are relatively lacking. Here, we report an appealing deep-trap ultraviolet storage phosphor, ScBO:Bi, which exhibits an ultra-narrowband light emission centered at 299 nm with a full width at half maximum (FWHM) of 0.
View Article and Find Full Text PDFDiscovering multifunctional luminescent materials to meet the demands of modern spectroscopy is of great significance. However, it is a standing challenge to enable multiple luminescence properties in a single material system via single metal ion doping. Here, we report the inherently Bi/Bi codoped CaGaGeO persistent phosphor where Bi is in situ reduced to Bi.
View Article and Find Full Text PDFPersistent phosphors emitting in the narrowband ultraviolet-B (NB-UVB) spectral region have aroused significant interest, owing to their special self-illuminating feature in realizing many advanced technological applications under excitation-free conditions, such as dermatological therapy and invisible optical tagging. Here, we focus our discussion on a new Gd-doped persistent phosphor, SrPO:Gd, which exhibits long-lasting NB-UVB persistent luminescence peaking at 312 nm for more than 24 h after charging by an X-ray beam. The NB-UVB light emission from the charged SrPO:Gd phosphor can be clearly detected by a UVB camera in bright indoor environment.
View Article and Find Full Text PDFInfrared-emitting phosphor-converted light-emitting diodes (LEDs) are desirable light sources for a very wide range of applications such as spectroscopy analysis, nondestructive monitoring, covert information identification, and night-vision surveillance. The most important aspect of infrared emitters for spectroscopy is to cover the widest possible wavelength range of emitted light. However, developing ultrabroad-band infrared emitters based on converter technology is still a challenging task due to the lack of suitable phosphor materials that emit in a wide wavelength range upon excitation from blue-emitting chips.
View Article and Find Full Text PDFThe growing demand for spectroscopy applications in the areas of agriculture, retail and healthcare has led to extensive research on infrared light sources. The ability of phosphors to absorb blue light from commercial LED and convert the excitation energy into long-wavelength infrared luminescence is crucial for the design of cost-effective and high-performance phosphor-converted infrared LEDs. However, the lack of ideal blue-pumped short-wave infrared (SWIR) phosphors with an emission peak longer than 900 nm greatly limits the development of SWIR LEDs using light converter technology.
View Article and Find Full Text PDF