Bound state in the continuum (BIC) refers to the trapped state in the radiation continuum of a system. In the terahertz band, BIC provides a unique and feasible method to design devices with ultra-high quality factor (Q factor) and to achieve intense terahertz-matter interaction, which is of great value to terahertz science and technology. Here, multiple BICs protected by the resonance symmetry in the terahertz metasurface consisting of metallic split ring resonators (SRR) is demonstrated.
View Article and Find Full Text PDFLight is a complex vectorial field characterized by its amplitude, phase, and polarization properties, which can be further represented by four basic parameters, that is, amplitudes and phases of two orthogonally polarized components. Controlling these parameters simultaneously and independently at will using metasurfaces are essential in arbitrarily manipulating the light propagation. However, most of the studies so far commonly require a great number of different meta-atoms or rely on diffraction under oblique incidence, which lack convenience and flexibility in design and implementation.
View Article and Find Full Text PDFMicrosyst Nanoeng
September 2022
Actively controlling the polarization states of terahertz (THz) waves is essential for polarization-sensitive spectroscopy, which has various applications in anisotropy imaging, noncontact Hall measurement, and vibrational circular dichroism. In the THz regime, the lack of a polarization modulator hinders the development of this spectroscopy. We theoretically and experimentally demonstrate that conjugated bilayer chiral metamaterials (CMMs) integrated with GeSbTe (GST225) active components can achieve nonvolatile and continuously tunable optical activity in the THz region.
View Article and Find Full Text PDFFast and efficient information processing and encryption, including writing, reading, and encryption memory, is essential for upcoming terahertz (THz) communications and information encryption. Here, we demonstrate a THz multi-level, nonvolatile, optically rewritable memory and encryption memory based on chalcogenide phase-change materials, GeSbTe (GST). By tuning the laser fluence irradiated on GST, we experimentally achieve multiple intermediate states and large-area amorphization with a diameter of centimeter-level in the THz regime.
View Article and Find Full Text PDFIn terahertz (THz) technologies, generation and manipulation of THz waves are two key processes usually implemented by different device modules. Integrating THz generation and manipulation into a single compact device will advance the applications of THz technologies in various fields. Here, we demonstrate a hybrid nonlinear plasmonic metasurface incorporating an epsilon-near-zero (ENZ) indium tin oxide (ITO) layer to seamlessly combine efficient generation and manipulation of THz waves across a wide frequency band.
View Article and Find Full Text PDFActive control of metasurfaces has attracted widespread attention because of the adjustable electromagnetic properties obtained. Here we designed and experimentally studied a dynamically controllable polarization converter in the terahertz band. By designing the structural parameters and utilizing the insulator-to-metal phase transition of vanadium dioxide and principle of current resonance, dynamic tunability of the polarization conversion function from dual-broadband (0.
View Article and Find Full Text PDFEfficient and flexible manipulation of electromagnetic waves using metasurfaces has attracted continuous attention in recent years. However, previous studies mainly apply sole resonance effect to accomplish the task. Here, we show that introducing a meta-coupling effect would reveal further physical insights in the electromagnetic wave control.
View Article and Find Full Text PDFChiral metamaterials have attracted wide interest because strong optical activity at designed frequencies could be achieved beyond that in natural materials. Here we propose an all-dielectric metamaterial with strong extrinsic circular dichroism and circular birefringence by periodically arranging symmetry-broken dielectric Mie resonators at terahertz frequencies. The strong interaction between the electric and magnetic resonances from circularly polarized incident waves dominates the performance of the all-dielectric metamaterial, which exhibits a 60% circular dichroism in transmission and a polarization rotation angle of 60° at maximum, respectively.
View Article and Find Full Text PDFMetasurfaces are 2D engineered structures with subwavelength granularity, offering a wide range of opportunities to tailor the impinging wavefront. However, fundamental limitations on their efficiency in wave transformation, associated with their deeply subwavelength thickness, challenge their implementation in practical application scenarios. Here, it is shown how the coherent control of metagratings through multiple wave excitations can provide new opportunities to achieve highly reconfigurable broadband metasurfaces with large diffraction efficiency, beyond the limitations of conventional approaches.
View Article and Find Full Text PDFThe absorption region of a water-based absorber was expanded by introducing tetramethylurea (TMU) into the inclusion, whose dielectric properties are tunable through the concentration of TMU. The dielectric spectroscopy of a TMU/water mixture was deconstructed using a Debye model. We designed a four-layer ultra-broadband microwave absorber with a supernatant micro-structure.
View Article and Find Full Text PDFChiral materials can exhibit different levels of transmission for opposite propagation directions of the same electromagnetic wave. Here we demonstrate thermal switching of asymmetric transmission of linearly polarized terahertz waves. The effect is observed in a terahertz metamaterial containing 3D-chiral metallic inclusions and achiral vanadium dioxide inclusions.
View Article and Find Full Text PDFTaking advantage of the tunable conductivity of graphene under high terahertz (THz) electric field, a graphene-metal hybrid metamaterial consisting of an array of three adjoined orthogonally oriented split-ring resonators (SRRs) is proposed and experimentally demonstrated to show a maximum modulation depth of 23% in transmission when the THz peak field reaches 305 kV/cm. The transmission of the sample is dominated by the antisymmetric and symmetric resonant modes originating from the strong magneto-inductive and conductive coupling among the three SRRs, respectively. Numerical simulations and model calculations based on a coupled oscillator theory were performed to explain the modulation process.
View Article and Find Full Text PDF