Utilization of microbes as the carbon source and structural template to fabricate porous carbon has incentivized great interests owing to their diverse micromorphology and intricate intracellular structure, apart from the obvious benefit of "turning waste into wealth." Challenges remain to preserve the biological structure through the harsh and laborious post-synthetic treatments, and tailor the functionality as desired. Herein, Escherichia coli is directly coated with metal-organic frameworks (MOFs) through in situ assembly to fabricate N, P co-doped porous carbon capsules expressing self-phosphorized metal phosphides.
View Article and Find Full Text PDFIn this paper we fabricate a robust flexible solid-state supercapacitor (FSC) device by embedding a conductive poly(vinyl alcohol) hydrogel into aligned carbon nanotube (CNT) arrays. We carefully investigate the effect of distribution, interface properties and densification of CNTs in the gel matrix on the electrochemical properties of an FSC. The total electrochemical capacitance of the device is measured to be 227 mF cm with a maximum energy density of 0.
View Article and Find Full Text PDF