Publications by authors named "Xie-Wan Chen"

Background: Immune checkpoint inhibitors (ICIs) have become a standard care in non-small-cell lung cancer (NSCLC). However, its application to epidermal growth factor receptor (EGFR)-mutant NSCLC patients is confronted with drug resistance. This study aimed to clarify the potential role of Yes1-associated transcriptional regulator (YAP1) in ICIs treatment for EGFR-mutant NSCLC population.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) have revealed significant clinical values in different solid tumors and hematological malignancy, changing the landscape for the treatment of multiple types of cancer. However, only a subpopulation of patients has obvious tumor response and long-term survival after ICIs treatment, and many patients may experience other undesirable clinical features. Therefore, biomarkers are critical for patients to choose exact optimum therapy.

View Article and Find Full Text PDF

The resistance to radiotherapy in lung cancer can be attributed to vasculogenic mimicry (VM) to some extent. Celecoxib (CXB), a selective inhibitor of cyclooxygenase-2 (COX-2), is reported as a radiosensitizer in non-small cell lung cancer (NSCLC). However, whether CXB can regulate VM formation an off-target effect to radiosensitize NSCLC remains unclear.

View Article and Find Full Text PDF

The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS).

View Article and Find Full Text PDF

A series of antibodies against vascular endothelial growth factor (VEGF) have been developed for the treatment of various types of cancer, including non-small cell lung cancer (NSCLC) in recent years. However, tumors frequently demonstrate resistance to these strategies of VEGF inhibition. Efforts to better understand the mechanism underlying the acquired resistance to anti-VEGF antibodies are warranted.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer-related fatalities worldwide, and non-small cell lung cancer (NSCLC) is the main pathological type. MicroRNAs (miRNAs or miRs) are a class of small non-coding RNAs, which are involved in tumor initiation and progression. miR‑223 is a tumor suppressor miRNA that has been reported in various types of cancer, including lung cancer.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) play a key role in repairing the injured vascular endothelium by differentiating into mature endothelial cells (ECs) or secreting cytokines in a paracrine manner to promote proliferation of existing ECs. However, the mechanisms underlying the proliferation of EPCs were not fully understood. In order to investigate the mechanisms of EPC proliferation, we isolated EPCs from mononuclear cells of mouse spleens.

View Article and Find Full Text PDF

Tumor initiating cells (TICs) serve as the root of tumor growth. After identifying TICs in spontaneous breast tumors of the MMTV-Wnt1 mouse model, we confirmed the specific expression and activation of Yes-associated protein 1 (Yap1) within TICs. To investigate the role of Yap1 in the self-renewal of breast TICs and the underlying mechanism, we sorted CD49fhighEpCAMlow cells as breast TICs.

View Article and Find Full Text PDF

Background: Breast cancer stem cells (BCSCs) have been reported as the origin of breast cancer and the radical cause of drug resistance, relapse and metastasis in breast cancer. BCSCs could be derived from mutated mammary epithelial stem cells (MaSCs). Therefore, comparing the molecular differences between BCSCs and MaSCs may clarify the mechanism underlying breast carcinogenesis and the targets for gene therapy.

View Article and Find Full Text PDF

Radiotherapy (RT) is a key therapeutic strategy for lung cancer, the most common cause of cancer-related deaths worldwide, but radioresistance often occurs and leads to failure of RT. It is therefore important to clarify the mechanism underlying radioresistance in lung cancer. Cancer stem cells (CSCs) are considered the fundamental reason for radioresistance.

View Article and Find Full Text PDF