Publications by authors named "Xie Zhixiong"

Compared to pathogens and , HYS has stronger virulence towards . However, the underlying mechanisms haven't been fully understood. The heme synthesis system is essential for virulence, and former studies of HemN have focused on the synthesis of heme, while the relationship between HemN and virulence were barely pursued.

View Article and Find Full Text PDF

In the present study, an -expressed yeast ribosomal protein was used as a template for synthesizing RPL14B-based CdSe quantum dots the quasi-biosynthesis strategy at low temperature. The synthetic bionic RPL14B-based CdSe quantum dots were characterized using TEM, HRTEM, and EDX spectra, and the results showed that the synthesized quantum dots were CdSe quantum dots with a crystal face spacing of 0.21 and 0.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are common carcinogens. Benzo(a)pyrene is one of the most difficult high-molecular-weight (HMW) PAHs to remove. Biodegradation has become an ideal method to eliminate PAH pollutants from the environment.

View Article and Find Full Text PDF

A Gram-negative, yellow-pigmented, aerobic and rod-shaped bacterium, designated as strain BaP3, was isolated from the soil. Strain BaP3 grew at 16-37℃ (optimum, 30 °C) and pH 6.0-8.

View Article and Find Full Text PDF

The newly discovered iron scavenger 7-hydroxytropolone (7-HT) is secreted by HYS. In addition to possessing an iron-chelating ability, 7-HT has various other biological activities. However, 7-HT's biosynthetic pathway remains unclear.

View Article and Find Full Text PDF

Quantum dots (QDs) containing zinc (Zn) and tellurium (Te) have low toxicity and excellent optoelectronic properties, which make them ideal fluorescent probes for use in environmental monitoring. However, their size/shape distribution synthesized by existing methods is not as good as that of other nanoparticles, thus limiting their application. Exploring whether this kind of QD can be biosynthesized and whether it can act as a nanoprobe are favorable attempts to expand the synthesis method and the application of QDs.

View Article and Find Full Text PDF

Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of sp.

View Article and Find Full Text PDF

Selenium (Se) is a micronutrient in most eukaryotes, and Se-enriched yeast is the most common selenium supplement. However, selenium metabolism and transport in yeast have remained unclear, greatly hindering the application of this element. To explore the latent selenium transport and metabolism mechanisms, we performed adaptive laboratory evolution under the selective pressure of sodium selenite and successfully obtained selenium-tolerant yeast strains.

View Article and Find Full Text PDF

7-Hydroxytropolone (7-HT) is a unique iron scavenger synthesized by HYS that has various biological activities in addition to functioning as a siderophore. HYS is more pathogenic than toward , an observation that is closely linked to the biosynthesis of 7-HT. The nonfluorescent siderophore () gene cluster is responsible for the orderly biosynthesis of 7-HT and represents a competitive advantage that contributes to the increased survival of HYS; however, the regulatory mechanisms of 7-HT biosynthesis remain unclear.

View Article and Find Full Text PDF

HYS is more virulent than toward but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster / in HYS is involved in the virulence of this strain toward , and there are no reports of GtrA, GtrB and GtrII in any species. The pathogenicity of HYS was evaluated using as a host.

View Article and Find Full Text PDF

Pseudomonas fluorescens ATCC13525 is an important growth-promoting rhizobacteria (PGPR) and plant disease biocontrol bacterium. However, due to poor stress resistance, it is prone to be inactivated by preparation, drying and storage. In this study, we investigated the effects of different stress preadaptation methods (2.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel biosynthesis method was used to create these QDs by coordinating unrelated biochemical reactions, resulting in nanoparticles with a consistent size of 3.9 ± 0.6 nm and enhanced fluorescence intensity.
  • * The synthesized AgSe QDs showed excellent biocompatibility and low toxicity, making them suitable for in vivo imaging applications; this research expands the possibilities for bioimaging technology.
View Article and Find Full Text PDF

Background: COVID-19 has caused a global pandemic and the death toll is increasing. However, there is no definitive information regarding the type of clinical specimens that is the best for SARS-CoV-2 detection, the antibody levels in patients with different duration of disease, and the relationship between antibody level and viral load.

Methods: Nasopharyngeal swabs, anal swabs, saliva, blood, and urine specimens were collected from patients with a course of disease ranging from 7 to 69 days.

View Article and Find Full Text PDF

The abuse of antibiotics and the consequent increase of drug-resistant bacteria constitute a serious threat to human health, and new antibiotics are urgently needed. Research shows that antimicrobial peptides produced by natural organisms are potential substitutes for antibiotics. Based on (known as five-pacer viper) genome bioinformatics analysis, we discovered a new cathelicidin antibacterial peptide which was called FP-CATH.

View Article and Find Full Text PDF

Pseudomonas donghuensis HYS, a bacterial strain identified from Donghu Lake, has tremendous toxicity toward Caenorhabditis elegans and is characterized by high 7-hydroxytropolone siderophore production. Here, the relationship between pathogenic siderophore production and pantothenic acid was evaluated. The pathogenicity of P.

View Article and Find Full Text PDF

Autophagy is well-known as a common cellular response to nanomaterials. As one of the most comprehensively studied carbon-based nanomaterials, fullerene and its derivatives have been reported to bring about autophagic features in various cell lines, but little is known about the role of fullerenol (C(OH)) on the modulation of autophagy in human gastric tumor cell line SGC-7901. Fullerenol treatment led to the accumulation of autophagosomes, as evidenced by the increased fluorescent intensity of monodansylcadaverine (MDC) staining cells, an elevated level of LC3 protein, and the observation of auotphagosomes in cytoplasm.

View Article and Find Full Text PDF

Nanosized oncolytic viral light particles (L-particles), separated from progeny virions, are composed of envelopes and several tegument proteins of viruses, free of nucleocapsids. The noninfectious L-particles experience the same internalization process as mature oncolytic virions, which exhibits great potential to act as targeted therapeutic platforms. However, the clinical applications of L-particle-based theranostic platforms are rare due to the lack of effective methods to transform L-particles into nanovectors.

View Article and Find Full Text PDF

The accurate determination of the molar concentration or the number concentration of particles in a defined volume is important but challenging. Since particle diversity and heterogeneity cannot be ignored in particle quantification, single particle counting has become quite important. However, most methods require standard samples (calibrators) which are usually difficult to obtain.

View Article and Find Full Text PDF

Pseudomonas donghuensis HYS is the type strain of a recently identified species, P. donghuensis, which has pathogenic potential with an unclear virulence mechanism. In this study, we used Caenorhabditis elegans as a host to explore the virulence mechanism of P.

View Article and Find Full Text PDF

7-Hydroxytropolone (7-HT) is a symmetrical seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of HYS. Cluster 1 includes 12 genes related to the synthesis of 7-HT; among these genes, those for two regulators, Orf1 and Orf12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR and β-galactosidase and classical siderophore assays indicated that the transcription levels of and , as well as those of crucial genes to , were repressed under high-iron conditions.

View Article and Find Full Text PDF

Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked.

View Article and Find Full Text PDF

Ficin is classified as a sulfhydryl protease isolated from the latex of fig trees. In most cases, a particular enzyme fits a few types of substrate and catalyzes one type of reaction. In this investigation, we found sufficient proofs for the intrinsic peroxidase-like activity of ficin and designed experiments to examine its effectiveness in a variety of scenarios.

View Article and Find Full Text PDF

Pseudomonas donghuensis can excrete large quantities of iron chelating substances in iron-restricted environments. At least two kinds of iron-chelator can be found in the culture supernatant: fluorescent siderophores pyoverdins, and an ethyl acetate-extractable non-fluorescent substance. The non-fluorescent substance was the dominant contributor to the iron chelating activity of the culture supernatant of P.

View Article and Find Full Text PDF

Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.

View Article and Find Full Text PDF

The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858 bp encoding a polypeptide of 285 amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD.

View Article and Find Full Text PDF