Publications by authors named "Xicong Liu"

Immune activation contributes to the pathophysiology of psychiatric disorders. Administration of a single dose of lipopolysaccharides (LPS) has been shown to induce depressive- and anxiety-like behaviors in rodents through activation of the kynurenine pathway, increasing levels of the N-methyl-d-aspartate (NMDA) receptor agonist quinolinic acid. Conversely, repeated administration of LPS produces increased levels of the NMDA receptor antagonist kynurenic acid.

View Article and Find Full Text PDF

Objective: Sustained immune activation leads to cognitive dysfunctions, depression-, and anxiety-like behaviours in humans and rodents. It is modelled by administration of lipopolysaccharides (LPS) to induce expression of pro-inflammatory cytokines that then activate indoleamine 2,3 dioxygenase (IDO1), the rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism. Here, we ask whether chronic IDO1 inhibition by 1-methyl-tryptophan (1-MT, added at 2 g/l in the drinking water) or chronic inhibition of tryptophan 2,3 dioxygenase (TDO2), another enzyme capable of converting tryptophan to kynurenine, by 680C91 (15 mg/kg per os), can rescue LPS-induced (0.

View Article and Find Full Text PDF

PDGF-CC is a member of the platelet-derived growth factor (PDGF) family that stimulates PDGFRα phosphorylation and thereby activates intracellular signalling events essential for development but also in cancer, fibrosis and neuropathologies involving blood-brain barrier (BBB) disruption. In order to elucidate the biological and pathological role(s) of PDGF-CC signalling, we have generated high affinity neutralizing monoclonal antibodies (mAbs) recognizing human PDGF-CC. We determined the complementarity determining regions (CDRs) of the selected clones, and mapped the binding epitope for clone 6B3.

View Article and Find Full Text PDF

Background: Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia.

Methods: In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia.

View Article and Find Full Text PDF

Objective: There is a growing interest in the role of kynurenine pathway and tryptophan metabolites in the pathophysiology of depression. In the present study, the metabolism of tryptophan along the kynurenine pathway was analysed in a rat model of depression.

Methods: Kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) were measured by high-performance liquid chromatography (HPLC) in prefrontal cortex (PFC) and frontal cortex (FC) in a rat model of depression, the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL) rats.

View Article and Find Full Text PDF

Exposure to infections in early life is considered a risk-factor for developing schizophrenia. Recently we reported that a neonatal CNS infection with influenza A virus in mice resulted in a transient induction of the brain kynurenine pathway, and subsequent behavioral disturbances in immune-deficient adult mice. The aim of the present study was to investigate a potential role in this regard of kynurenic acid (KYNA), an endogenous antagonist at the glycine site of the N-methyl-D-aspartic acid (NMDA) receptor and at the cholinergic α7 nicotinic receptor.

View Article and Find Full Text PDF