Publications by authors named "Xicheng Ding"

We present a nanoengineered system for sustained and prolonged delivery of protein therapeutics, which has the potential to impact current orthopedic regeneration strategies. Specifically, we introduce two-dimensional nanosilicates with a high surface area and charged characteristics for delivery of active proteins for more than 30 days. The nanosilicates show high binding efficacy without altering the protein conformation and bioactivity.

View Article and Find Full Text PDF

Unlabelled: Clostridium difficile spore germination is essential for colonization and disease. The signals that initiate C. difficile spore germination are a combination of taurocholic acid (a bile acid) and glycine.

View Article and Find Full Text PDF

Brucella spp. cause undulant fever in humans and brucellosis in variety of other animals. Both innate and adaptive immunity have been shown to be important in controlling Brucella infection.

View Article and Find Full Text PDF

Brucella spp. are intracellular bacteria that cause an infectious disease called brucellosis in humans and many domestic and wildlife animals. B.

View Article and Find Full Text PDF

Avian coccidiosis is an intestinal disease caused by protozoa of the genus Eimeria. To investigate the potential of recombinant protein vaccines to control coccidiosis, we cloned 2 Eimeria sp. genes (EtMIC2 and 3-1E), expressed and purified their encoded proteins, and determined the efficacy of in ovo immunization to protect against Eimeria infections.

View Article and Find Full Text PDF

An Eimeria tenella microneme recombinant gene (EtMIC2) and encoded protein were evaluated as potential vaccines against avian coccidiosis. In ovo inoculation with the EtMIC2 gene increased anti-EtMIC2 antibody titers at days 10 and 17 following E. tenella infection.

View Article and Find Full Text PDF

A cloned Eimeria acervulina gene (3-1E) was used to vaccinate chickens in ovo against coccidiosis, both alone and in combination with genes encoding interleukin (IL)-1, IL-2, IL-6, IL-8, IL-15, IL-16, IL-17, IL-18, or interferon (IFN)-gamma. Vaccination efficacy was assessed by increased serum anti-3-1E antibody titers, reduced fecal oocyst shedding, and enhanced body weight gain following experimental infection with E. acervulina.

View Article and Find Full Text PDF

We have previously demonstrated that short oligodeoxynucleotides containing unmethylated CpG motifs (CpG ODNs) exert a positive effect on weight loss and oocyst shedding associated with Eimeria infection when injected in vivo. The present work investigated the effects of in ovo vaccination with CpG ODNs and an Eimeria recombinant microneme protein (MIC2), alone or in combination, on susceptibility to coccidiosis. In ovo injection of CpG ODNs alone enhanced resistance to experimental Eimeria acervulina infection as best exemplified by reduced oocyst shedding.

View Article and Find Full Text PDF

Poultry coccidiosis is the major parasitic disease of poultry and, until now, no recombinant vaccine has been developed. Short oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs (CpG ODNs) have been shown to be effective immunoprotective agents and vaccine adjuvants in mammalian systems. Their use in poultry to protect against intracellular parasites has not been reported to date.

View Article and Find Full Text PDF

A purified recombinant protein from Eimeria acervulina (3-1E) was used to vaccinate chickens in ovo against coccidiosis both alone and in combination with expression plasmids encoding the interleukin 1 (IL-1), IL-2, IL-6, IL-8, IL-15, IL-16, IL-17, IL-18, or gamma interferon (IFN-gamma) gene. When used alone, vaccination with 100 or 500 mug of 3-1E resulted in significantly decreased oocyst shedding compared with that in nonvaccinated chickens. Simultaneous vaccination of the 3-1E protein with the IL-1, -15, -16, or -17 gene induced higher serum antibody responses than 3-1E alone.

View Article and Find Full Text PDF