Shelterin is a six-protein complex that coats chromosome ends to ensure their proper protection and maintenance. Similar to the human shelterin, fission yeast shelterin is composed of telomeric double- and single-stranded DNA-binding proteins, Taz1 and Pot1, respectively, bridged by Rap1, Poz1 and Tpz1. The assembly of the proteinaceous Tpz1-Poz1-Rap1 complex occurs cooperatively and disruption of this shelterin bridge leads to unregulated telomere elongation.
View Article and Find Full Text PDFLong non-coding RNAs can often fold into different conformations. Telomerase RNA, an essential component of the telomerase ribonucleoprotein (RNP) enzyme, must fold into a defined structure to fulfill its function with the protein catalytic subunit (TERT) and other accessory factors. However, the mechanism by which the correct folding of telomerase RNA is warranted in a cell is still unknown.
View Article and Find Full Text PDFTelomere elongation through telomerase enables chromosome survival during cellular proliferation. The conserved multifunctional shelterin complex associates with telomeres to coordinate multiple telomere activities, including telomere elongation by telomerase. Similar to the human shelterin, fission yeast shelterin is composed of telomeric sequence-specific double- and single-stranded DNA-binding proteins, Taz1 and Pot1, respectively, bridged by Rap1, Poz1, and Tpz1.
View Article and Find Full Text PDFTightly controlled recruitment of telomerase, a low-abundance enzyme, to telomeres is essential for regulated telomere synthesis. Recent studies in human cells revealed that a patch of amino acids in the shelterin component TPP1, called the TEL-patch, is essential for recruiting telomerase to telomeres. However, how TEL-patch-telomerase interaction integrates into the overall orchestration of telomerase regulation at telomeres is unclear.
View Article and Find Full Text PDFShelterin, a six-member complex, protects telomeres from nucleolytic attack and regulates their elongation by telomerase. Here, we have developed a strategy, called MICro-MS (Mapping Interfaces via Crosslinking-Mass Spectrometry), that combines crosslinking-mass spectrometry and phylogenetic analysis to identify contact sites within the complex. This strategy allowed identification of separation-of-function mutants of fission yeast Ccq1, Poz1, and Pot1 that selectively disrupt their respective interactions with Tpz1.
View Article and Find Full Text PDF