Publications by authors named "Xiayuan Wu"

Nanobubble water promotes the degradation of difficult-to-degrade organic matter, improves the activity of electron transfer systems during anaerobic digestion, and optimizes the composition of anaerobic microbial communities. Therefore, this study proposes the use of nanobubble water to improve the yield of medium chain carboxylic acids produced from cow manure by chain elongation. The experiment was divided into two stages: the first stage involved the acidification of cow manure to produce volatile acidic fatty acids as electron acceptors, and the second phase involved the addition of lactic acid as an electron donor for the chain elongation.

View Article and Find Full Text PDF

Although microbial fuel cells (MFCs) have potential for high-salt wastewater treatment, their application is limited by poor salt tolerance, deactivation and unstable catalytic performance. This study designed Ce-C, N-C, and Ce-N modified activated carbon (Ce-N-C) based on the catalytic mechanism and salt tolerance performance of Ce and N elements to address these limitations. With activated carbon (AC) as the control, this study analyzed the stability of the four cathodes under different salinity environments using norfloxacin (NOR) as a probe to assess the effect of cathodes and salinity on MFC degradation performance.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) have been considered a promising technology for Cr removal, but they are limited by Cr-reducing biocathodes with low extracellular electron transfer (EET) and poor microbial activity. In this study, three kinds of nano-FeS hybridized electrode biofilms, obtained through synchronous biosynthesis (Sy-FeS), sequential biosynthesis (Se-FeS) and cathode biosynthesis (Ca-FeS), were applied as biocathodes for Cr removal in MFCs. The Ca-FeS biocathode exhibited the best performance due to the superior properties of biogenic nano-FeS (e.

View Article and Find Full Text PDF

Biocathode microbial fuel cells (MFCs) show promise for Cr(vi)-contaminated wastewater treatment. However, biocathode deactivation and passivation caused by highly toxic Cr(vi) and nonconductive Cr(iii) deposition limit the development of this technology. A nano-FeS hybridized electrode biofilm was fabricated by simultaneously feeding Fe and S sources into the MFC anode.

View Article and Find Full Text PDF

Exploring an efficient acclimation strategy to obtain robust bioanodes is of practical significance for antibiotic wastewater treatment by bioelectrochemical systems (BESs). This study investigated the effects of two acclimation conditions on chloramphenicol (CAP)-degrading anode biofilm formation in microbial fuel cells (MFCs). The one was continuously added the extracellular polymeric substances (EPS) extracted from anaerobic sludge and increasing concentrations of CAP after the first start-up phase, while the other was added the EPS-1 (N-acyl-homoserine lactones, namely AHLs were extracted from the EPS) at the same conditions.

View Article and Find Full Text PDF

How the acetate and propionate accumulation impact anaerobic syntrophy during methane formation is not well understood. To investigate such effect, continuous acetate (35 g/L), propionate (11.25 g/L) and bicarbonate (30 g/L) supplementation were used during mesophilic anaerobic digestion.

View Article and Find Full Text PDF

In this study, a core-shell Fe@Co nanoparticles uniformly modified graphite felt (Fe@Co/GF) was fabricated as the cathode by one-pot self-assembly strategy for the degradation of vanillic acid (VA), syringic acid (SA), and 4-hydroxybenzoic acid (HBA) in the Bio-Electro-Fenton (BEF) system. The Fe@Co/GF cathode showed dual advantages with excellent electrochemical performance and catalytic reactivity not only due to the high electron transfer efficiency but also the synergistic redox cycles between Fe and Co species, both of which significantly enhanced the in situ generation of HO and hydroxyl radicals (OH) to 152.40 μmol/L and 138.

View Article and Find Full Text PDF

Electroactive biofilms (EABs) can be integrated with conductive nanomaterials to boost extracellular electron transfer (EET) for achieving efficient waste treatment and energy conversion in bioelectrochemical systems. However, the in situ nanomaterial-modified EABs of mixed-culture, and their response under environmental stress are rarely revealed. Here, two nanocatalyst-decorated EABs were established by self-assembled Au nanoparticles-reduced graphene oxide (Au-NPs/rGO) in mixed-biofilms with different maturities, then their multi-property were analyzed under long-term phenolic shock.

View Article and Find Full Text PDF

The bioanode of mixed consortia was for the first time used to in-situ synthesize iron sulfide nanoparticles in a microbial fuel cell (MFC) over a long-term period (46 days). These poorly crystalline nanoparticles with an average size of 29.97 ± 7.

View Article and Find Full Text PDF

Cr(vi) laden wastewaters generally comprise a range of multiple heavy metals such as Au(iii) and Cu(ii) with great toxicity. In the present study, cooperative cathode modification by biogenic Au nanoparticles (BioAu) reduced from aqueous Au(iii) and Cu(ii) co-reduction were investigated for the first time to enhance Cr(vi) removal in microbial fuel cells (MFCs). With the co-existence of Cu(ii) in the catholyte, the MFC with carbon cloth modified with nanocomposites of multi-walled carbon nanotubes blended with BioAu (BioAu/MWCNT) obtained the highest Cr(vi) removal rate (4.

View Article and Find Full Text PDF

Temperature regulations (mesophilic/thermophilic) and digesting modes (mono-/co-digestion) play key roles in the biomethane potential of anaerobic digestion, but limited research focus on the synergetic effects on microbial interconnections of the biomethane process. In this study, the pineapple and maize residues under different operations were monitored by batch biogas assays and 16S high-throughput sequencing to explore: 1) biomethane potential regarding different operations, 2) microbial communities in different treated reactors, and 3) significant factors determine microbial distribution. Results showed that the co-digestion had higher methanogenic abundance and biomethane production (~3300 mL) versus mono-digestion under mesophilic condition.

View Article and Find Full Text PDF

This study investigated methane production and ARGs reduction during thermophilic AD of swine manure with the addition of different Cu salts (cupric sulfate, cupric glycinate, and the 1:1 mixture of these two salts). Results showed methane production was increased by 28.78% through adding mixed Cu salts.

View Article and Find Full Text PDF

A membrane-covered composting system was used to investigate the odor emission and microbial community succession during biogas residue composting. Results showed that in comparison with the control (CK) group, the NH and HS emissions outside the membrane of the membrane-covered (CT) group decreased by 58.64% and 38.

View Article and Find Full Text PDF

Process fluctuation caused by temperature modification of anaerobic digestion is routinely monitored via operational parameters, such as pH and gas production, but these parameters are lagging on microbial community performance. In this study, C isotope fractionation in CH and CO of biogas together with microbial community dynamics were applied to evaluate process stability in response to temperature increment. Results showed that the weakening correlated links between Firmicutes affiliated families and Methanomicrobiaceae were found regarding temperature increase.

View Article and Find Full Text PDF

This study evaluated the feasibility of microbial fuel cells (MFCs) for simultaneous electricity generation and degradation of phenolic compounds. The voltage generation was inhibited by 36.18-63.

View Article and Find Full Text PDF

Phenolic compounds are problematic byproducts generated from lignocellulose pretreatment. In this study, the feasibility degradation of syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) by Bio-Electro-Fenton (BEF) system with a novel Fe-Mn/graphite felt (Fe-Mn/GF) composite cathode were investigated. The nano-scale Fe-Mn multivalent composite catalyst with core shell structure distributed more evenly on GF surface to form a catalyst layer with higher oxygen reduction reaction performance.

View Article and Find Full Text PDF

Adenosine, which is produced mainly by microbial fermentation, plays an important role in the therapy of cardiovascular disease and has been widely used as an antiarrhythmic agent. In this study, guanosine 5'-monophosphate (GMP) synthetase gene (guaA) was inactivated by gene-target manipulation to increase the metabolic flux from inosine 5'-monophosphate (IMP) to adenosine in B. subtilis A509.

View Article and Find Full Text PDF

This paper studied the property of three different biofilm carriers added into the anaerobic digestion systems, a granular activated carbon, a polyacrylonitrile, and a polyacrylonitrile modified with diethylenetriamine (PAN-NH). The PAN-NH system kept the maximum biogas and methane production, which were 42.69% and 37.

View Article and Find Full Text PDF

Pyrene is one of the polycyclic aromatic hydrocarbons, which are a potential threat to ecosystems due to their mutagenicity, carcinogenicity, and teratogenicity. In this study, several bacteria were isolated from oil contaminated sludge and their capacity to biodegrade pyrene was investigated. Of these bacteria, the monoculture strain LZ6 showed the highest pyrene anaerobic biodegradation rate of 33% after 30 days when the initial concentration was 50 mg/L, and was identified as sp.

View Article and Find Full Text PDF

A facultative electroactive bacterium, designated strain H, was aerobically isolated from the biocathode of a hexavalent chromium (Cr(VI))-reducing microbial fuel cell (MFC). Strain H is Gram-positive and rod shaped (1-3 μm length). 16S rRNA gene analysis suggested that this strain (accession number MH782060) belongs to the genus and shows maximum similarity to whose electrochemical activity has never previously been reported.

View Article and Find Full Text PDF

In this study, carbon cloth anodes were modified using biogenic gold nanoparticles (BioAu) and nanohybrids of multi-walled carbon nanotubes blended with BioAu (BioAu/MWCNT) to improve the performance of microbial fuel cells (MFCs). The results demonstrated that BioAu modification significantly enhanced the electricity generation of MFCs. In particular, BioAu/MWCNT nanohybrids as the modifier displayed a better performance.

View Article and Find Full Text PDF

In order to improve the methane production and concentration, effect of activated carbon addition on the anaerobic fermentation of corn straw under the conditions of mesophilic temperature (38℃) and thermophilic temperature(50℃) was investigated in this study. The results showed that the addition of activated carbon could significantly promote methane production. Compared with the control group in mesophilic and thermophilic conditions, cumulative methane production could be increased by 63% and 96% in test groups.

View Article and Find Full Text PDF

The effect of copper (Ⅱ) wastewater addition on the treatment of chromium (Ⅵ) wastewater in dual-chamber microbial fuel cells (MFCs) was investigated for different Cr(Ⅵ)/Cu(Ⅱ) concentration ratios (2:1, 1:1, 1:2, 1:4) and external resistances (10, 500, 1000, 2000 Ω). The results demonstrated that the addition of Cu(Ⅱ) and Cr(Ⅵ) into the cathode chamber of MFCs could enhance the Cr(Ⅵ) removal efficiency. The Cr(Ⅵ) removal efficiency increased with the increase in the Cr(Ⅵ)/Cu(Ⅱ) concentration ratio.

View Article and Find Full Text PDF

Microbial fuel cell (MFC) is a promising device for energy generation and organic waste treatment simultaneously by electrochemically active bacteria (EAB). In this study, an integrated aerobic-anaerobic strategy was developed to improve the performance of P. aeruginosa-inoculated MFC.

View Article and Find Full Text PDF

γ-Aminobutyric acid (GABA) is an important bioactive component of tea (Camellia sinensis) providing various health benefits. We studied GABA accumulation via the GABA shunt and polyamine degradation pathways under anoxia in tea leaves. Anoxia caused a ∼20-fold increment in GABA concentration, relative to fresh tea leaves.

View Article and Find Full Text PDF