Publications by authors named "Xiaxia Han"

For adoptive therapy with T cell receptor engineered T (TCR-T) cells, the quantity and quality of the final cell product directly affect their anti-tumor efficacy. The post-transfer efficacy window of TCR-T cells is keen to optimizing attempts during the manufacturing process. Cbl-b is a E3 ubiquitin ligase previously shown with critical negative impact in T cell functions.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used bioinformatics tools to predict neoantigens from the PIK3CA mutation and successfully isolated T cells from healthy donors that specifically target these mutations.
  • * The functional analysis showed that these T cells have strong reactivity and effectiveness against cancer cells with the PIK3CA mutation, suggesting their potential as a therapeutic option in TCR-T cell therapy for cancer treatment.
View Article and Find Full Text PDF

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination.

View Article and Find Full Text PDF

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The single-celled eukaryote Euplotes exhibit high frequency of PRF. However, the molecular mechanism of modulating Euplotes PRF remains largely unknown.

View Article and Find Full Text PDF

Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in haploinsufficient individuals and in mice lacking in B cells.

View Article and Find Full Text PDF

Objective: Disruption of B cell homeostasis and subsequent dominance of effector B cell subsets are critical for the development of systemic lupus erythematosus (SLE). Revealing the key intrinsic regulators involved in the homeostatic control of B cells has important therapeutic value for SLE. This study was undertaken to determine the regulatory role of the transcription factor Pbx1 in B cell homeostasis and lupus pathogenesis.

View Article and Find Full Text PDF

Objective: Emerging evidence indicates that a distinct CD11c+T-bet+ B cell subset, termed age/autoimmune-associated B cells (ABCs), is the major pathogenic autoantibody producer in lupus. Human lupus is associated with significant metabolic alterations, but how ABCs orchestrate their typical transcription factors and metabolic programs to meet specific functional requirements is unclear. We undertook this study to characterize the metabolism of ABCs and to identify the regulators of their metabolic pathways in an effort to develop new therapies for ABC-mediated autoimmunity.

View Article and Find Full Text PDF

As a common disorder, chronic kidney disease (CKD) poses a great threat to human health. Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a complication of CKD characterized by disturbances in the levels of calcium, phosphorus, parathyroid hormone (PTH), and vitamin D; abnormal bone formation affecting the mineralization and linear growth of bone; and vascular and soft tissue calcification. PTH reflects the function of the parathyroid gland and also takes part in the metabolism of minerals.

View Article and Find Full Text PDF