Fruit taste quality is greatly influenced by the content of soluble sugars, which are predominantly stored in the vacuolar lumen. However, the accumulation and regulation mechanisms of sugars in most fruits remain unclear. Recently, we established the citrus fruit vacuole proteome and discovered the major transporters localized in the vacuole membrane.
View Article and Find Full Text PDFAbscisic acid (ABA) is a crucial plant hormone that regulates various aspects of plant development. However, the specific function of the ABA receptor PYL in fruit development has not been fully understood. In this study, we focused on DkPYL3, a member of the ABA receptor subfamily Ⅰ in persimmon, which exhibited high expression levels in fruit, particularly during the young fruit and turning stages.
View Article and Find Full Text PDFEthylene can accelerate the postharvest ripening process of kiwifruit, while indole-3-acetic acid (IAA) delays it. However, the molecular mechanism by which ethylene regulates IAA degradation is unclear. Here, we found that ethephon promotes the degradation of free IAA in kiwifruit.
View Article and Find Full Text PDFHow aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear.
View Article and Find Full Text PDFCrop improvement by inbreeding often results in fitness penalties and loss of genetic diversity. We introduced desirable traits into four stress-tolerant wild-tomato accessions by using multiplex CRISPR-Cas9 editing of coding sequences, cis-regulatory regions or upstream open reading frames of genes associated with morphology, flower and fruit production, and ascorbic acid synthesis. Cas9-free progeny of edited plants had domesticated phenotypes yet retained parental disease resistance and salt tolerance.
View Article and Find Full Text PDFAlthough ABA signaling has been widely studied in Arabidopsis, the roles of core ABA signaling components in fruit remain poorly understood. Herein, we characterize SlPP2C1, a group A type 2C protein phosphatase that negatively regulates ABA signaling and fruit ripening in tomato. The SlPP2C1 protein was localized in the cytoplasm close to AtAHG3/AtPP2CA.
View Article and Find Full Text PDFAbscisic acid (ABA) glucose conjugation mediated by uridine diphosphate glucosyltransferases (UGTs) is an important pathway in regulating ABA homeostasis. In the present study, we investigated three tomato SlUGTs that are highly expressed in fruit during ripening, and these SlUGTs were localized to the cytoplasm and cell nucleus. Among these three UGTs, SlUGT75C1 catalyzes the glucosylation of both ABA and IAA in vitro; SlUGT76E1 can only catalyze the conjugation of ABA; and SlUGT73C4 cannot glycosylate either ABA or IAA.
View Article and Find Full Text PDFThe VlMYBA subfamily of transcription factors has been known to be the functional regulators in anthocyanin biosynthesis in red grapes. In this study, the expressions of the VlMYBA1-2 and VlMYBA 2 genes, and the responses of the VlMYBA1-2/2 promoters to ABA and ACC treatments in Kyoho grape berries are examined through quantitative real-time PCR analysis and the transient expression assay. The results show that the expressions of VlMYBA1-2/2 increase dramatically after véraison and reach their highest levels when the berries are nearly fully ripe.
View Article and Find Full Text PDFAbscisic acid (ABA) regulates fruit development and ripening via its signaling. However, the exact role of ABA signaling core components in fruit have not yet been clarified. In this study, we investigated the potential interactions of tomato (Solanum lycopersicon) ABA signaling core components using yeast two-hybrid analysis, with or without ABA at different concentrations.
View Article and Find Full Text PDF