Security and privacy have always been key concerns for individuals in various edge-assisted services. In this paper, we present a feasible quantum solution to an important primitive of secure multiparty computations, i.e.
View Article and Find Full Text PDFObjective: To prepare α-(8-quinolinyloxy) monosubstituted phthalocyanine zinc nanosuspension (ZnPc-NS) for photodynamic therapy by intravenous administration.
Methods: The formulation and preparation technology of ZnPc-NS were assessed by particle size using the precipitation-high pressure homogenization method. The efficacy of ZnPc-NS was evaluated based on particle size, zeta potential, sedimentation ratio, TEM imaging, stability assessment, photodynamic activity and safety.
Spectrochim Acta A Mol Biomol Spectrosc
February 2018
A series of organic dyes based on quinoline as an electron-deficient π-linker, were designed and synthesized for dye sensitized solar cells (DSSC) application. These push-pull conjugated dyes, sharing same anchoring group with distinctive electron-rich donating groups such as N,N-diethyl (DEA-Q), 3,6-dimethoxy carbazole (CBZ-Q), bis(4-butoxyphenyl)amine (BPA-Q), were synthesized by Riley oxidation of CH followed by Knoevenagel condensation of the corresponding aldehyde precursors 2a-c with cyanoacrylic acid. The optical, electrochemical, theoretical calculation and photovoltaic properties with these three dyes were systematically investigated.
View Article and Find Full Text PDFThe SnS thin films were successfully prepared by pyrolysis procedure for the counter electrodes in quantum dot sensitized solar cells (QDSCs) using the methanol solution containing stannous chloride dihydrate (0.40 mol x L(-1)) and thiourea (0.40 mol x L(-1)) as precursor solution at 300 degrees C in the air atmosphere.
View Article and Find Full Text PDFNovel ruthenium complexes (MC113-MC117), obtained by modifying the terpyridine ligand of the black dye (N749), have been evaluated as sensitizers for dye sensitized solar cells (DSSCs). The modification is carried out by attaching selected chromophores, with varying electron donating strength, covalently to the central ring of the ligand. The complexes, compared to the parent dye, show red shifted absorption covering visible and near IR regions and higher molar extinction coefficients.
View Article and Find Full Text PDFThe FeSe2 films with controllable morphologies (including 3D flower-like and sphere-shaped) have been applied as the counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). It is found that 3D flower-like FeSe2 CEs perform comparably to conventional platinum CEs (power conversion efficiencies of 8.00 and 7.
View Article and Find Full Text PDFIn this study, a novel 5-Fluorouracil (5-FU) enema with good bio adhesion and temperature sensitivity was developed using in situ gelling technology. The preparation was formulated as a free-flowing liquid before use, while a layer of gel film was quickly formed when administered in the rectum, with a large contact surface area. It also demonstrated good biocompatibility, appropriate gel strength and bio adhesive force with excellent adhesion to rectal mucosa and prolonged action time, allowing more effective drug absorption and diffusion to surrounding tissues.
View Article and Find Full Text PDFA simple solution-processing method was employed to fabricate panchromatic mp-TiO2/CH3NH3PbI3/P3HT-MWNT/Au solar cells. MWNTs in a P3HT-MWNT composite acted as efficient nanostructured charge transport tunnels and induce crystallization of P3HT, hence significantly enhancing the conductivity of the composite. The fill factor of the hybrid solar cells was greatly enhanced by 26.
View Article and Find Full Text PDFDrug-loading transfersomes were prepared with itraconazole, a lipophilic drug, as a model drug to investigate the key factor affecting transfersomes quality and to evaluate their qualities. Drug-loading transfersomes were prepared using film dispersion method. The quality of transfersomes was evaluated by HPLC, transmission electron microscope, particle size analyzer and in vitro release.
View Article and Find Full Text PDFStable quasi-solid-state dye-sensitized solar cells (DSC) were fabricated using 12-hydroxystearic acid as a low molecular mass organogelator (LMOG) to form gel electrolyte. TEM image of the gel exhibited the self-assembled network constructed by the LMOG, which hindered flow and volatilization of the liquid. The formation of less-mobile polyiodide ions such as I 3 (-) and I 5 (-) confirmed by Raman spectroscopy increased the conductivity of the gel electrolytes by electronic conduction process, which should be rationalized by the Grotthuss-type electron exchange mechanism caused by rather packed polyiodide species in the electrolytes.
View Article and Find Full Text PDF