Publications by authors named "Xiaozhe Ding"

Article Synopsis
  • Adeno-associated viruses (AAVs) are important tools used for delivering genes in research and clinical settings, but understanding how these viruses interact with cells can be challenging, especially for those that have been modified through directed evolution.
  • This study uses a human cell microarray platform to uncover how both natural and engineered AAVs connect with human cell receptors, discovering that AAV9 specifically interacts with interleukin 3 (IL3) and that engineered AAVs can interact with the low-density lipoprotein receptor-related protein 6 (LRP6), which might enhance their ability to cross the blood-brain barrier.
  • The findings also highlight potential side effects from engineered AAVs due to off-target tissue binding, paving the
View Article and Find Full Text PDF
Article Synopsis
  • Deep-learning methods for protein structure prediction are highly accurate, but there's a gap in predicting which proteins can effectively bind to targets, limiting their practical applications in protein engineering.
  • To address this gap, a new tool called APPRAISE has been developed, which scores the target-binding ability of engineered proteins after their structures are predicted using tools like AlphaFold or ESMFold, doing so in less than a second per model.
  • APPRAISE has been successfully tested for various engineered proteins, including those targeting the SARS-CoV-2 spike and certain viral vectors, and is available online through Google Colaboratory, enhancing protein structure prediction and aiding biomedical research.
View Article and Find Full Text PDF
Article Synopsis
  • Multi-wavelength analytical ultracentrifugation (MW-AUC) offers enhanced accuracy for characterizing and quantifying adeno-associated viruses compared to traditional methods.
  • Guidelines for experimental design in sedimentation velocity and buoyant density equilibrium AUC are provided.
  • MW-AUC effectively identifies capsid ratios and contaminants, detects partially filled capsids, and delivers more reliable results than dual-wavelength AUC, transmission electron microscopy, and mass photometry, reinforcing its status as the gold standard for analyzing viral vectors.
View Article and Find Full Text PDF

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis.

View Article and Find Full Text PDF
Article Synopsis
  • Efficient delivery of genes across the brain's blood vessels is crucial for treating neurological diseases, and modified adeno-associated viruses (AAV9) have been developed to target brain endothelial cells effectively in various animal models.
  • These modified AAVs show enhanced ability to transduce cells in non-human primates and human brain tissue, although their targeting efficiency varies across species.
  • The research indicates that these mouse-specific capsids can be utilized to alter the blood-brain barrier, turning it into a functional biofactory that produces beneficial proteins, like Hevin, to improve synaptic function in mice with synaptic deficits.
View Article and Find Full Text PDF

Adeno-associated virus serotype 9 (AAV9) is a promising gene therapy vector for treating neurodegenerative diseases due to its ability to penetrate the blood-brain barrier. PHP.eB was engineered from AAV9 by insertion of a 7-amino acid peptide and point mutation of neighboring residues, thereby enhancing potency in the central nervous system.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) are typically single-stranded deoxyribonucleic acid (ssDNA) encapsulated within 25-nm protein capsids. Recently, tissue-specific AAV capsids (e.g.

View Article and Find Full Text PDF

Recombinant adeno-associated viruses (rAAVs) are efficient gene delivery vectors via intravenous delivery; however, natural serotypes display a finite set of tropisms. To expand their utility, we evolved AAV capsids to efficiently transduce specific cell types in adult mouse brains. Building upon our Cre-recombination-based AAV targeted evolution (CREATE) platform, we developed Multiplexed-CREATE (M-CREATE) to identify variants of interest in a given selection landscape through multiple positive and negative selection criteria.

View Article and Find Full Text PDF

Neoantigen-specific T cells are increasingly viewed as important immunotherapy effectors, but physically isolating these rare cell populations is challenging. Here, we describe a sensitive method for the enumeration and isolation of neoantigen-specific CD8+ T cells from small samples of patient tumor or blood. The method relies on magnetic nanoparticles that present neoantigen-loaded major histocompatibility complex (MHC) tetramers at high avidity by barcoded DNA linkers.

View Article and Find Full Text PDF

Integral membrane proteins (MPs) are key engineering targets due to their critical roles in regulating cell function. In engineering MPs, it can be extremely challenging to retain membrane localization capability while changing other desired properties. We have used structure-guided SCHEMA recombination to create a large set of functionally diverse chimeras from three sequence-diverse channelrhodopsins (ChRs).

View Article and Find Full Text PDF

A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution.

View Article and Find Full Text PDF

Histone modification patterns and their combinatorial readout have emerged as a fundamental mechanism for epigenetic regulation. Here we characterized Spindlin1 as a histone effector that senses a cis-tail histone H3 methylation pattern involving trimethyllysine 4 (H3K4me3) and asymmetric dimethylarginine 8 (H3R8me2a) marks. Spindlin1 consists of triple tudor-like Spin/Ssty repeats.

View Article and Find Full Text PDF