Publications by authors named "Xiaoyuan Zeng"

Due to the high theoretical energy density, lithium-carbon dioxide (Li-CO) batteries provide unique advantages when using CO to generate electricity. However, the issues with lithium dendrite generated by uneven deposition and quick cathode passivation continue to impede the development of Li-CO batteries. In this work, a Janus separator with dual functionalities is created using an in-situ growth and hydrothermal technique.

View Article and Find Full Text PDF

Foodborne mycotoxins (FBMTs) are toxins produced by food itself or during processing and transportation that pose an enormous threat to public health security. However, traditional instrumental and chemical methods for detecting toxins have shortcomings, such as high operational difficulty, time consumption, and high cost, that limit their large-scale applications. In recent years, aptamer-based biosensors have become a new tool for food safety risk assessment and monitoring due to their high affinity, good specificity, and fast response.

View Article and Find Full Text PDF

Bone marrow endothelial progenitor cells (BM EPCs) are crucial in supporting haematopoietic regeneration, while the BM EPCs of haematological patients with chemotherapy-induced thrombocytopenia (CIT) are unavoidably damaged. Therefore, the present study aimed to examine the effect of thrombopoietin (TPO) on the recovery of BM EPCs of CIT patients and to identify the underlying mechanisms. The cell functions were determined by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake and fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin-I (FITC-UEA-I) binding assay, as well as proliferation, migration and tube formation experiments.

View Article and Find Full Text PDF

The development of low-cost, high-performance oxygen electrocatalysts is of great significance for energy conversion and storage. As a potential substitute for precious metal electrocatalysts, the construction of efficient and cost-effective oxygen electrocatalysts is conducive to promoting the widespread application of zinc-air batteries. Herein, CoNiMOF nanoparticles encapsulated within a carbon matrix were synthesized and employed as cathode catalysts in zinc-air batteries.

View Article and Find Full Text PDF

Sodium/potassium-ion batteries (NIBs and KIBs) are considered the most promising candidates for lithium-ion batteries in energy storage fields. Tin sulfide (SnS) is regarded as an attractive negative candidate for NIBs and KIBs thanks to its superior power density, high-rate performance and natural richness. Nevertheless, the slow dynamics, the enormous volume change and the decomposition of polysulfide intermediates limit its practical application.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC.

View Article and Find Full Text PDF

Green hydrogen production from renewably powered water electrolysis is considered as an ideal approach to decarbonizing the energy and industry sectors. Given the high-cost supply of ultra-high-purity water, as well as the mismatched distribution of water sources and renewable energies, combining seawater electrolysis with coastal solar/offshore wind power is attracting increasing interest for large-scale green hydrogen production. However, various impurities in seawater lead to corrosive and toxic halides, hydroxide precipitation, and physical blocking, which will significantly degrade catalysts, electrodes, and membranes, thus shortening the stable service life of electrolyzers.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples.

View Article and Find Full Text PDF

Batteries with a Li-metal anode have recently attracted extensive attention from the battery communities owing to their high energy density. However, severe dendrite growth hinders their practical applications. More seriously, when Li dendrites pierce the separators and trigger short circuit in a highly flammable organic electrolyte, the results would be catastrophic.

View Article and Find Full Text PDF

Gain-of-function kinase mutations are common in AML and usually portend an inferior prognosis. We reported a novel mechanism whereby kinase mutants induced intracellular alkalization characteristic in oncogenesis. Thirteen kinases were found to activate sodium/hydrogen exchanger (NHE1) in normal hematopoietic progenitors, of which FLT3-ITD, KRAS, and BTK phosphorylated NHE1 maintained alkaline intracellular pH (pHi) and supported survival of AML cells.

View Article and Find Full Text PDF

The integration of nickel (Ni) nanoparticle (NP)-embedded carbon layers (Ni@C) into the three-dimensional (3D) hierarchically porous carbon architectures, where ultrahigh boron (B) and nitrogen (N) doping is a potential methodology for boosting Ni catalysts' water splitting performances, was achieved. In this study, the novel 3D ultrafine Ni NP-embedded and B- and N-codoped hierarchically porous carbon nanowires (denoted as Ni@BNPCFs) were successfully synthesized via pyrolysis of the corresponding 3D nickel acetate [Ni(AC)·4HO]-hydroxybenzeneboronic acid-polyvinylpyrrolidone precursor networks woven by electrospinning. After optimizing the pyrolysis temperatures, various structural and morphological characterization analyses indicate that the optimal Ni@BNPCFs-900 networks own a large surface area, abundant micro/mesopores, and vast carbon edges/defects, which boost doping a large amount of B (5.

View Article and Find Full Text PDF

Along with the widespread applications of various energy storage and conversion devices, the prices of precious metal platinum (Pt) and transition-metal cobalt/nickel keep continuously growing. In the future, designing high-efficiency nonprecious-metal catalysts based on low-cost iron (Fe) and manganese (Mn) metals for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is fairly critical for commercial applications of hydrogen fuel cells. In this study, for the first time, we design novel three-dimensional (3D) hybrid networks consisting of manganese oxide (MnO)-modified, iron carbide (FeC)-embedded, and boron (B)/nitrogen (N) codoped hierarchically porous carbon nanofibers (denoted FeMn@BNPCFs).

View Article and Find Full Text PDF

Objective: To explore the possibility of microRNA miR-31-3p as a biomarker for bone metastasis of non-small-cell lung cancer (NSCLC) and its molecular mechanism to the invasion and metastasis of NSCLC cells.

Methods: Real-time quantitative PCR (RT-qPCR) was used to detect the expression levels of miR-31-3p and forkhead box 1 (FOXO1) in NSCLC tissues, serum, and cells to analyze the correlation between the expression levels of miR-31-3p and the clinicopathology of NSCLC. After interference with or overexpressing miR-31-3p, NSCLC cell proliferation, apoptosis, invasion ability, and migration ability were detected by MTT, flow cytometry, Transwell, and scratch experiment, respectively.

View Article and Find Full Text PDF

Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement.

View Article and Find Full Text PDF

In December 2019, an emergence of pneumonia was detected in patients infected with a novel coronavirus (CoV) in Wuhan (Hubei, China). The International Committee on Taxonomy of Viruses named the virus severe acute respiratory syndrome‑CoV‑2 and the disease CoV disease‑19 (COVID‑19). Patients with COVID‑19 present with symptoms associated with respiratory system dysfunction and hematological changes, including lymphopenia, thrombocytopenia and coagulation disorders.

View Article and Find Full Text PDF

Objective: To explore whether thrombopoietin (TPO) can rescue megakaryopoiesis by protecting bone marrowderived endothelial progenitor cells (BM-EPCs) in patients receiving chemotherapy for hematological malignancies.

Methods: Bone marrow samples were collected from 23 patients with hematological malignancies 30 days after chemotherapy and from 10 healthy volunteers. BM-EPCs isolated from the samples were identified by staining for CD34, CD309 and CD133, and their proliferation in response to treatment with TPO was assessed using CCK8 assay.

View Article and Find Full Text PDF

Corona Virus Disease 2019 (COVID-19) is caused by the novel coronavirus SARS-CoV-2. Emerging genetic and clinical evidence suggests similarities between COVID-19 patients and those with severe acute respiratory syndrome and Middle East respiratory syndrome. Hematological changes such as lymphopenia and thrombocytopenia are not rare in COVID-19 patients, and a smaller population of these patients had leukopenia.

View Article and Find Full Text PDF

Hypoxic pulmonary hypertension (HPH) is a fatal disease with limited therapeutic strategies. Combination therapy is regarded as the standard of care in PH and becoming widely used in clinical practice. However, many PH patients treated with combinations of available clinical drugs still have a poor prognosis.

View Article and Find Full Text PDF

Acute lung injury (ALI) caused by sepsis occurs early and the condition is severe, and is also an important reason for accelerating the death of patients. Increasing evidence has identified long non-coding RNA (lncRNA) metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) as a regulator of ALI. However, the potential mechanism underlying MALAT1 on ALI still needs further identification.

View Article and Find Full Text PDF

Background: MADS-box genes play important roles in vegetative growth and reproductive development and are essential for the correct development of plants (particularly inflorescences, flowers, and fruits). However, this gene family has not been identified nor their functions analyzed in Brassica oleracea.

Results: In this study, we performed a whole-genome survey of the complete set of MADS-box genes in B.

View Article and Find Full Text PDF

Sodium-ion batteries are regarded as one of the most promising energy storage systems, but the choice of anode material is still facing great challenges. Biomass carbon materials were explored for their low cost and wide range of sources. Here, a hard carbon material with a "honeycomb" structure using pine pollen (PP) as a precursor was successfully prepared and applied as an anode.

View Article and Find Full Text PDF

The cycling stability of Li-O batteries has been impeded by the lack of high-efficiency, and durable oxygen cathodes for the oxygen-reduction reaction (ORR) and the oxygen-evolution reaction (OER). Herein we report a novel TiN nanorod array-based cathode, which was firstly prepared by growing a TiN nanorod array on carbon paper (CP), and then followed by depositing MnO ultrathin sheets or Ir nanoparticles on the TiN nanorods to form well-ordered, three-dimensional (3D), and free-standing structured cathodes: TiN@MnO/CP and TiN@Ir/CP. Both cathodes exhibited good specific capacity and excellent cycling stability.

View Article and Find Full Text PDF

Objective: To analyze the clinical efficacy and toxicity of vitamin support in lung adenocarcinoma patients treated with pemetrexed second-line chemotherapy.

Methods: Two hundred and eighty-three patients with stage 3/4 lung adenocarcinoma treated at our hospital from August 2010 to August 2013 were included in this study. The lung adenocarcinomas in all the 283 patients were confirmed by pathology or cytology, all were EGFR-negative, and all patients received pemetrexed second line chemotherapy.

View Article and Find Full Text PDF