Publications by authors named "Xiaoyuan Deng"

Gastric cancer (GC) is a common malignant disease that has a fifth highest incidence and fourth highest mortality worldwide. The Warburg effect is a common phenomenon observed in tumors, which suggests that tumor cells would enhance glucose uptake by overexpressing multiple glucose transporters. Sodium glucose transporter 2 (SGLT2) is one of glucose transporters which highly expressed in several cancers, but its role in gastric cancer is still unclear.

View Article and Find Full Text PDF

Background: The role of Sm-like 5 (LSM5) in colon cancer has not been determined. In this study, we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.

Aim: To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.

View Article and Find Full Text PDF

Purpose: The aim of this study was to describe the longitudinal developmental trajectories and its influencing factors of sexual activity in patients with breast cancer during treatment.

Methods: A prospective longitudinal study was conducted, including 225 newly diagnosed breast cancer patients in A tumor specialty three-class hospital in Southwest China. We measured sexual activity at the time of admission and diagnosis (T) and one month (T), three months (T), six months (T), and nine months (T) after diagnosis.

View Article and Find Full Text PDF

Tissue engineering and electrotherapy are two promising methods to promote tissue repair. However, their integration remains an underexplored area, because their requirements on devices are usually distinct. Triboelectric nanogenerators (TENGs) have shown great potential to develop self-powered devices.

View Article and Find Full Text PDF

Objective: Deltamethrin (DLM) is a commonly used insecticide, which is harmful to many organs. Here, we explored the effects of chronic low-dose DLM residues on colon tissue and its potential mechanism.

Methods: The mice were given long-term low-dose DLM by intragastric administration, and the body weights and disease activity index (DAI) scores of the mice were regularly recorded.

View Article and Find Full Text PDF

There has been an increasing interest in the use of amyloids for constructing various functional materials. The design of amyloid-associated functional materials requires the identification of the core peptide sequences as the fundamental building block. The existing computational methods are limited in terms of delineating polypeptides, the typical non-Euclidean structural data, and they fail to capture the dynamic interactions between amino acids due to ignoring the contextual information from surrounding amino acids.

View Article and Find Full Text PDF

Background: Insufficient angiogenesis and the lack of skin appendages are critical challenges in cutaneous wound healing. Stem cell-fabricated cell sheets have become a promising strategy, but cell sheets constructed by a single cell type are inadequate to provide a comprehensive proregenerative microenvironment for wound tissue.

Methods: Based on the communication between cells, in this study, bone marrow mesenchymal stem cells (BMSCs) and hair follicle stem cells (HFSCs) were cocultured to fabricate a composite cell sheet (H/M-CS) for the treatment of full-thickness skin wounds in mice.

View Article and Find Full Text PDF

Many prokaryotic viruses are temperate and their reactivation is tightly regulated. However, except for a few bacterial model systems, the regulatory circuits underlying the exit from lysogeny are poorly understood, especially in archaea. Here, we report a three-gene module which regulates the switch between lysogeny and replicative cycle in a haloarchaeal virus SNJ2 (family Pleolipoviridae).

View Article and Find Full Text PDF

The fibrillization and deposition of the human islet amyloid polypeptide (hIAPP) are the pathological hallmark of type 2 diabetes mellitus (T2DM), and these insoluble fibrotic depositions of hIAPP are considered to strongly affect insulin secretion by inducing toxicity toward pancreatic islet β-cells. The current strategy of preventing amyloid aggregation by nanoparticle-assisted inhibitors can only disassemble fibrotic amyloids into more toxic oligomers and/or protofibrils. Herein, for the first time, we propose a type of cysteine-derived chiral carbon quantum dot (CQD) that targets plasmin, a core natural fibrinolytic protease in humans.

View Article and Find Full Text PDF

Background: Perioperative neurocognitive disorders (PNDs) are considered the most common postoperative complication in geriatric patients. However, its pathogenesis is not fully understood. Surgery-triggered neuroinflammation is a major contributor to the development of PNDs.

View Article and Find Full Text PDF

Neuroinflammation can cause cognitive deficits, and preexisting neuroinflammation is observed frequently in the clinic after trauma, surgery, and infection. Patients with preexisting neuroinflammation often need further medical treatment under general anesthesia. However, the effects of postconditioning with general anesthetics on preexisting neuroinflammation have not been determined.

View Article and Find Full Text PDF

Background: Stem cell therapies have gained great attention for providing novel solutions for treatment of various injuries and diseases due to stem cells' self-renewal, ability to differentiate into various cell types, and favorite paracrine function. Nevertheless, the low retention of transplanted stem cell still limits their clinical applications such as in wound healing in view of an induced harsh microenvironment rich in reactive oxygen species (ROS) during inflammatory reactions.

Methods: Herein, a novel chitosan/acellular dermal matrix (CHS/ADM) stem cell delivery system is developed, which is of great ROS scavenging activity and significantly attenuates inflammatory response.

View Article and Find Full Text PDF

Ketamine can induce neurotoxicity after exposures to the developing brain. To investigate whether ketamine at subanesthetic dosage or its environmental condition can cause long-term cognitive dysfunction after multiple exposures in male or female neonatal rats, postnatal day 5 (P5)-day-old Sprague-Dawley rats were randomized into three groups: ketamine group, vehicle group, and control group (no disturbance). Learning and memory abilities from P60 to P65 and immunofluorescence tests for myelin basic protein (MBP) in gray matter on P65 were conducted.

View Article and Find Full Text PDF

It is well known that tumors have an acidic pH microenvironment and contain a high content of hydrogen peroxide (HO). These features of the tumor microenvironment may provide physiochemical conditions that are suitable for selective tumor therapy and recognition. Here, for the first time, we demonstrate that a type of graphene oxide nanoparticle (N-GO) can exhibit peroxidase-like activities (i.

View Article and Find Full Text PDF

Adult mammalian skin has a defective regenerative capacity following full-thickness cutaneous injury; this defect overshadows the complete physiological functions of the skin. Immune-mediated skin reconstruction driven by biological scaffolds is a recently developed innovative repair strategy to support regenerative wound healing. However, to date, little is known about how biological scaffolds orchestrate the immune response to promote regeneration.

View Article and Find Full Text PDF

Nanoscale delivery based on polyethylene glycol (PEG)ylated graphene oxide (GO-PEG) merits attention for biomedical applications owing to its functional surface modification, superior solubility/biocompatibility and controllable drug release capability. However, impaired skin regeneration in applications of these fascinating nanomaterials in diabetes is still limited, and critical issues need to be addressed regarding insufficient collagen hyperplasia and inadequate blood supply. Therefore, a high-performance tissue engineering scaffold with biocompatible and biodegradable properties is essential for diabetic wound healing.

View Article and Find Full Text PDF

Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP-labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin.

View Article and Find Full Text PDF

Background: Adult full-thickness cutaneous wound repair suffers from an imbalanced immune response, leading to nonfunctional reconstructed tissue and fibrosis. Although various treatments have been reported, the immune-mediated tissue regeneration driven by biomaterial offers an attractive regenerative strategy for damaged tissue repair.

Methods: In this research, we investigated a specific bone marrow-derived mesenchymal stem cell (BMSC) sheet that was induced by the Traditional Chinese Medicine curcumin (CS-C) and its immunomodulatory effects on wound repair.

View Article and Find Full Text PDF

The regional injection of connective tissue growth factor (CTGF) for diabetic wound healing requires multiple components and results in a substantial loss of its biological activity. Acellular dermal matrix (ADM) scaffolds are optimal candidates for delivering these factors to local ischaemic environments. In this study, we explored whether CTGF loaded on ADM scaffolds can enhance fibronectin (FN) expression to accelerate diabetic wound healing via the protein kinase C (PKC) signalling pathway.

View Article and Find Full Text PDF

C-X-C chemokine receptor type 4 (CXCR4) is an alpha-chemokine receptor specific for stromal cell-derived factor 1 (SDF-1 also called CXCL12). The antagonist of CXCR4 can mobilize CD34+ cells and hematopoietic stem cells from bone marrow within several hours, and it has an efficacy on diabetes ulcer through acting on the SDF-1/CXCR4 axis. In this study, we investigated for the first time whether the antagonist of CXCR4 (Plerixafor/AMD3100) delivered on acellular dermal matrix (ADM) may accelerate diabetes-impaired wound healing.

View Article and Find Full Text PDF

Background/aims: Bone marrow Mesenchymal stem cells (MSCs) are promising for promoting cutaneous wound healing through reinforcing cellular processes. We evaluated the effect of GFP-tagged MSCs transplantation on skin regeneration in excisional wounds in mice.

Methods: MSCs from GFP-labeled transgenic mice were co-cultured with acellular dermal matrix (ADM) scaffolds, and MSC-ADM scaffolds were transplanted into surgical skin wounds of BALB/c mice.

View Article and Find Full Text PDF

Propofol can cause developing neuronal apoptosis in both in vivo and in vitro studies, and the mechanism is unclear till now. Our previous study has demonstrated that propofol can increase the TNF-α expression in the prefrontal cortex in rat developing brain, the TNF-α antagonist, etanercept, can inhibit propofol-induced neuronal apoptosis, but little is known about how TNF-α mediates that process. This study reveals that propofol at clinically relevant concentrations increases the TNF-α synthesis and release in neurons, and induces neuronal apoptosis; etanercept significantly reduces neuronal apoptosis, the elevation of cleaved caspase-8 and cleaved caspase-9, or the Akt phosphorylation induced by propofol, while the selective PI3K antagonist blocks the neuroprotection of etanercept.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) had been reported as a novel therapeutic strategy for non-healing diabetic cutaneous wound mainly by promoting the formation of extracellular matrix (ECM) and neovasculature. Collagen regeneration is one of the key processes of ECM remodeling in wound healing. Accordingly, rapid assessment of the collagen content in a noninvasive manner can promptly provide objective evaluation for MSC therapy of cutaneous wound healing and strength evidence to adjust therapeutic regimen.

View Article and Find Full Text PDF

Propofol can induce acute neuronal apoptosis, neuronal loss or long-term cognitive impairment when exposed in neonatal rodents, but the mechanisms by which propofol induces developmental neurotoxicity are unclear. Recent studies have demonstrated that propofol can increase the TNF-α level in the developing brain, but there is a lack of direct evidence to show whether TNF-α is partially or fully involved in propofol-induced neurotoxicity. The present study shows that propofol exposure in neonatal rats induces an increase of TNF-α in the cerebral spinal fluid, hippocampus and prefrontal cortex (PFC).

View Article and Find Full Text PDF