Autophagy is a highly regulated process in eukaryotes to maintain homeostasis and manage stress responses. Understanding the regulatory mechanisms and key players involved in autophagy will provide critical insights into disease-related pathogenesis and potential clinical treatments. In this review, we describe the hallmark events involved in autophagy, from its initiation, to the final destruction of engulfed targets.
View Article and Find Full Text PDFReal-time and label-free antibody screening systems are becoming more popular because of the increasing output of purified antibodies and antibody supernatant from many antibody discovery platforms. However, the properties of the biosensor can greatly affect the kinetic and epitope binning results generated by these label-free screening systems. ForteBio human-specific ProA, anti-human IgG quantitation (AHQ), anti-human Fc capture (AHC) sensors, and custom biotinylated-anti-human Fc capture (b-AHFc) sensors were evaluated in terms of loading ability, regeneration, kinetic characterization, and epitope binning with both purified IgG and IgG supernatant.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
March 2016
Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation.
View Article and Find Full Text PDFAutophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes.
View Article and Find Full Text PDFAutophagy is a catabolic degradation process in which cellular proteins and organelles are engulfed by double-membrane autophagosomes and degraded in lysosomes. Autophagy has emerged as a critical pathway in tumor development and cancer therapy, although its precise function remains a conundrum. The current consensus is that autophagy has a dual role in cancer.
View Article and Find Full Text PDFThe orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2014
Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP.
View Article and Find Full Text PDFBile acid-like molecules named dafachronic acids (DAs) control the dauer formation program in Caenorhabditis elegans through the nuclear receptor DAF-12. This mechanism is conserved in parasitic nematodes to regulate their dauer-like infective larval stage, and as such, the DAF-12 ligand binding domain has been identified as an important therapeutic target in human parasitic hookworm species that infect more than 600 million people worldwide. Here, we report two x-ray crystal structures of the hookworm Ancylostoma ceylanicum DAF-12 ligand binding domain in complex with DA and cholestenoic acid (a bile acid-like metabolite), respectively.
View Article and Find Full Text PDFProtein Expr Purif
October 2003
Stem cell factor (SCF) is a hematopoietic cytokine that promotes the survival, proliferation, and differentiation of hematopoietic cells. A dual human stem cell factor (dhSCF) cDNA was constructed, which consisted of a full-length human stem cell factor cDNA plus a truncated hSCF cDNA (1-145aa), linked by a peptide (GGGGSGGGGSGG) coding region. The dhSCF gene was cloned into baculovirus transfer vector pAcSecG2T under the control of polyhedrin promoter.
View Article and Find Full Text PDF