Background: Spinal cord injury patients frequently suffer from anxiety and depression, which can seriously affect their quality of life and recovery. Acupuncture, as a traditional Chinese therapy, has been used to treat anxiety and depression for more than 2000 years. The aim is to evaluate the clinical efficacy of acupuncture in the treatment of anxiety and depression in spinal cord injury patients.
View Article and Find Full Text PDFExcess nitrogen and phosphorus inputs are the main causes of aquatic environmental deterioration. Accurately quantifying and dynamically assessing the regional nitrogen and phosphorus pollution emission (NPPE) loads and influencing factors is crucial for local authorities to implement and formulate refined pollution reduction management strategies. In this study, we constructed a methodological framework for evaluating the spatio-temporal evolution mechanism and dynamic simulation of NPPE.
View Article and Find Full Text PDFReal-time monitoring of biocatalytic-based processes is significantly improved and simplified when they can be visualized. Visual monitoring can be achieved by integrating a fluorescent unit with the biocatalyst. Herein, we outline the design strategies of fluorescent probes for monitoring biocatalysis: (1) probes for monitoring biocatalytic transfer: γ-glutamine is linked to the fluorophore as both a recognition group and for intramolecular charge transfer (ICT) inhibition; the probe is initially in an off state and is activated the transfer of the γ-glutamine group and the release of the free amino group, which results in restoration of the "Donor-π-Acceptor" (D-π-A) system and fluorescence recovery.
View Article and Find Full Text PDFMechanical response luminescence (MRL) describes the photophysical properties triggered by mechanical stimulation. Usually, MRL can be regulated by intermolecular interactions, molecular conformation or molecular packing, to achieve the desirable optical properties. Herein, at the molecular level, this review covers the factors that influence mechanically responsive fluorescent materials, involving the single- or multifactorial modulation of aliphatic chains, donor-receptor switch, substituent adjustment, and position isomerism.
View Article and Find Full Text PDFIn this paper, a scheduling model of PVC production by a calcium carbide method is designed based on a continuous-time modeling method, and an improved mixed-integer nonlinear programming (MINLP) model for scheduling of PVC production is proposed. The optimization goal is to minimize the total cost. Considering the practical requirements of both the solution rapidity and quality, a combined algorithm is further established using both the MINLP model and approximated mixed-integer linear program (MILP) model for PVC production scheduling.
View Article and Find Full Text PDFDespite multiple immunotherapeutic technologies that achieve potent T cell activation, effector T cells still lack efficiency because of the highly immunosuppressive conditions in the tumor microenvironment. Inspired by recent advances in nano-sized secreted vesicles known as exosomes as therapeutic agents and research revealing that circulating cancer cells have a “homing” capacity to return to the main tumor sites, we generated macrophage-tumor hybrid cells. We introduced nuclei isolated from tumor cells into activated M1-like macrophages to produce chimeric exosomes (aMT-exos).
View Article and Find Full Text PDFThe poor understanding of the complex multistep process taken by nanocarriers during the delivery process limits the delivery efficiencies and further hinders the translation of these systems into medicine. Here, we describe a series of six self-assembled nanocarrier types with systematically altered physical properties including size, shape, and rigidity, as well as both in vitro and in vivo analyses of their performance in blood circulation, tumor penetration, cancer cell uptake, and anticancer efficacy. We also developed both data and simulation-based models for understanding the influence of physical properties, both individually and considered together, on each delivery step and overall delivery process.
View Article and Find Full Text PDFTherapeutic leukaemia vaccines have shown modest potency. Here, we show that the co-encapsulation of a leukaemia-associated epitope peptide highly expressed in leukaemia patients and of the immune checkpoint inhibitor anti-programmed-cell-death-protein-1 (anti-PD-1) in degradable poly(lactic acid) microcapsules resulted in the sustained release of the peptide and of the antibody, which led to the recruitment of activated antigen-presenting cells to the injection site, their uptake of the peptide and the transportation of the anti-PD-1 antibody to lymph nodes, enhancing the expansion of epitope-specific T cells and the activation of cytotoxic T cells. After single subcutaneous injections of vaccine formulations with different epitope peptides, mice bearing leukaemia xenografts derived from humanized cell lines or from primary cells from patients showed better therapeutic outcomes than mice receiving repeated injections of free antigen, antibody and a commercial adjuvant.
View Article and Find Full Text PDFNanovaccines have attracted booming interests in vaccinology studies, but the profound impacts of their delivery mode on immune response remain unrealized. Herein, immunostimulatory CpG-modified tumor-derived nanovesicles (CNVs) are used as a nanovaccine testbed to initially evaluate the impacts of three distinct delivery modes, including mono-pulse CNVs, staggered-pulse CNVs, and gel-confined CNVs. Fundamentally, delivery mode has enormous impacts on the immunomodulatory effects, altering the spatiotemporal distribution of nanovaccine residence and dendritic cell-T cell interaction in lymph nodes, and finally affecting subsequent T cell-mediated immune performance.
View Article and Find Full Text PDFThe highly immunosuppressive tumor microenvironment (TME) in solid tumors often dampens the efficacy of immunotherapy. In this study, bacterial outer membrane vesicles (OMVs) are demonstrated as powerful immunostimulants for TME reprogramming. To overcome the obstacles of antibody-dependent clearance and high toxicity induced by OMVs upon intravenous injection (a classic clinically relevant delivery mode), calcium phosphate (CaP) shells are employed to cover the surface of OMVs, which enables potent OMV-based TME reprograming without side effects.
View Article and Find Full Text PDFRecent years have seen enormous advances in nanovaccines for both prophylactic and therapeutic applications, but most of these technologies employ chemical or hybrid semi-biosynthetic production methods. Thus, production of nanovaccines has to date failed to exploit biology-only processes like complex sequential post-translational biochemical modifications and scalability, limiting the realization of the initial promise for offering major performance advantages and improved therapeutic outcomes over conventional vaccines. A Nano-B5 platform for in vivo production of fully protein-based, self-assembling, stable nanovaccines bearing diverse antigens including peptides and polysaccharides is presented here.
View Article and Find Full Text PDFTherapeutic cancer vaccines that harness the immune system to reject cancer cells have shown great promise for cancer treatment. Although a wave of efforts have spurred to improve the therapeutic effect, unfavorable immunization microenvironment along with a complicated preparation process and frequent vaccinations substantially compromise the performance. Here, we report a novel microcapsule-based formulation for high-performance cancer vaccinations.
View Article and Find Full Text PDFMicromachines (Basel)
April 2020
A novel micromachined z-axis torsional accelerometer based on the tunneling magnetoresistive effect is presented in this paper. The plane main structure bonded with permanent magnetic film is driven to twist under the action of inertial acceleration, which results in the opposite variation of the magnetic field intensity. The variation of the magnetic field is measured by two differential tunneling magnetoresistive sensors arranged on the top substrate respectively.
View Article and Find Full Text PDFThe kidney renal clear cell carcinoma (KIRC) with poor prognosis is the main histological subtype of the renal cell carcinoma, accounting for 80-90% of patients. Currently, the N6-methyladenosine (m6A) epitranscriptional modification draws much attention. The m6A RNA modification, the most plentiful internal modification of mRNAs and noncoding RNAs in the majority of eukaryotes, regulates mRNAs at different levels and is involved in disease occurrence and progression.
View Article and Find Full Text PDFEnzymatic catalysis in living cells enables the in-situ detection of cellular metabolites in single cells, which could contribute to early diagnosis of diseases. In this study, enzyme is packaged in amorphous metal-organic frameworks (MOFs) via a one-pot co-precipitation process under ambient conditions, exhibiting 5-20 times higher apparent activity than when the enzyme is encapsulated in corresponding crystalline MOFs. Molecular simulation and cryo-electron tomography (Cryo-ET) combined with other techniques demonstrate that the mesopores generated in this disordered and fuzzy structure endow the packaged enzyme with high enzyme activity.
View Article and Find Full Text PDFAlthough the antimonene (AM) nanomaterial is recently emerging as a new photothermal therapy (PTT) agent, its rapid degradation in physiological medium immensely limits its direct utilization. To this end, we herein engineered AM by the cooperation of dimension optimization, size control, and cell membrane (CM) camouflage. Compared with traditional AM nanosheets, the resulting AM nanoparticles (∼55 nm) cloaked with the CM (denoted as CmNPs) exhibited significantly improved stability and increased photothermal efficacy as well as superior tumor targeting capacity.
View Article and Find Full Text PDFA novel cancer vaccine is developed by using FeO magnetic nanoclusters (MNCs) as the core and cancer cell membranes decorated with anti-CD205 as the cloak. Because of the superparamagnetism and magnetization of MNCs, it is first achieved for the magnetic retention of vaccine in the lymph nodes with a magnetic resonance imaging (MRI) guide, which opened the time window for antigen uptake by dendritic cells (DCs). Meanwhile, the camouflaged cancer cell membranes serve as a reservoir of various antigens, enabling subsequent multiantigenic response.
View Article and Find Full Text PDFAs traditional anticancer treatments fail to significantly improve the prognoses, exploration of therapeutic modalities is urgently needed. Herein, a biomimetic magnetosome is constructed to favor the ferroptosis/immunomodulation synergism in cancer. This magnetosome is composed of an FeO magnetic nanocluster (NC) as the core and pre-engineered leukocyte membranes as the cloak, wherein TGF-β inhibitor (Ti) can be loaded inside the membrane and PD-1 antibody (Pa) can be anchored on the membrane surface.
View Article and Find Full Text PDFMicromachines (Basel)
February 2019
This paper presents the design, simulation, fabrication and experiments of a micromachined z-axis tunneling magnetoresistive accelerometer with electrostatic force feedback. The tunneling magnetoresistive accelerometer consists of two upper differential tunneling magnetoresistive sensors, a middle plane main structure with permanent magnetic films and lower electrostatic feedback electrodes. A pair of lever-driven differential proof masses in the middle plane main structure is used for sensitiveness to acceleration and closed-loop feedback control.
View Article and Find Full Text PDFMild heat stimulation can promote the restoration of bone defects but unfortunately, the delivery of exo-hyperthermy into human body is not efficient enough. In this study, mild heat-induced osteogenesis with high efficacy is demonstrated on an osteoimplant composed of black phosphorus nanosheets and poly(lactic-co-glycolic acid) (BPs@PLGA) with the participation of near-infrared (NIR) light irradiation. BPs@PLGA with only 0.
View Article and Find Full Text PDFTherapeutic vaccines that arouse the cytotoxic T cell immune response to reject infected cells have been investigated extensively for treating disease. Due to the large amounts of resident antigen-presenting cells (APCs) and T cells in lymph nodes, great efforts have been made to explore the strategy of targeting lymph nodes directly with nanovaccines to activate T cells. However, these nanovaccines still have several problems, such as a low loading efficiency and compromised activity of antigens and adjuvants derived from traditional complicated preparation.
View Article and Find Full Text PDFAdoptive T-cell transfer for cancer therapy relies on both effective ex vivo T-cell expansion and in vivo targeting performance. One promising but challenging method for accomplishing this purpose is to construct multifunctional artificial antigen-presenting cells (aAPCs). We herein developed biomimetic magnetosomes as versatile aAPCs, wherein magnetic nanoclusters were coated with azide-engineered leucocyte membranes and then decorated with T-cell stimuli through copper-free click chemistry.
View Article and Find Full Text PDFA novel biomimetic immuno-magnetosome (IMS) is developed by coating a leukocyte membrane (decorated with anti-epithelial cell-adhesion molecule antibody) on a magnetic nanocluster. In addition to the good stability and magnetic controllability, the IMS also exhibits satisfactory binding avidity to circulating tumor cells but stealth property to leukocytes. As a result, rare tumor cells can be effectively enriched with undetectable leukocyte background.
View Article and Find Full Text PDF