Publications by authors named "Xiaoye Gao"

The microbial need for nutrient resources can be assessed by soil extracellular enzymes and their stoichiometry. Changes in lake water levels affect land use and nutrient management in the aquatic-terrestrial ecotones of the lakeshore. However, the drivers of changes in microbial nutrient limitation under different inundation gradients in the lake's aquatic-terrestrial ecotones remain unclear.

View Article and Find Full Text PDF

Background: Effective personal protective equipment (PPE) contribute to the prevention of COVID-19 infection. However, it is necessary to evaluate the potential risk of different medical protections in the isolation ward of COVID-19.

Objectives: We aimed to explore the dynamics in physiological indexes of medical staff under primary and secondary PPE in the isolation ward of COVID-19 and provide the scientific basis for determining the safe work strategy.

View Article and Find Full Text PDF

The Qinghai-Tibetan Plateau is a vast geographic area currently subject to climate warming. Improved knowledge of the CO respiration dynamics of the Plateau alpine meadows and of the impact of grazing on CO fluxes is highly desirable. Such information will assist land use planning.

View Article and Find Full Text PDF

seeds have physiological dormancy. Cold stratification releases seed dormancy. The changes in metabolite profiles of dormant seeds and cold stratified seeds during shorter incubation time in a favorable condition for seed germination have been studied.

View Article and Find Full Text PDF

Land use conversion could directly or indirectly influence heavy metal geochemistry by changing soil properties. The aim of this study was to explore the effect of land use conversion on surface soil heavy metal contamination in the karst plateau lakeshore wetlands of Southwest China. Based on this, a total of 120 soil samples were collected from 30 sites from different types of land uses (farmlands, grasslands and woodlands) around a lake in Suohuangcang National Wetland Park in August 2017.

View Article and Find Full Text PDF

Protein hydrogels constructed from recombinant proteins have attracted increasing interests for fundamental biological studies as well as applications in biomedical engineering field. In such protein hydrogels, biochemical and physical properties of protein hydrogels are often coupled to each other, making it challenging to investigate the individual effect of chemical and physical cues on cells. Moreover, laborious engineering is often required to incorporate different protein ligands into such hydrogels.

View Article and Find Full Text PDF

Alfalfa is a good green manure source, but its effect on rice growth has not been fully elucidated. Two green manure species, alfalfa and broad bean (Vicia faba L.), and two N fertilizer levels, alone or combination, were applied to a rice field.

View Article and Find Full Text PDF

Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins.

View Article and Find Full Text PDF

pH-responsive supramolecular amphiphilic micelles based on benzimidazole-terminated poly(ethylene glycol) (PEG-BM) and β-cyclodextrin-modified poly(L-lactide) (CD-PLLA) were developed by exploiting the host-guest interaction between benzimidazole (BM) and β-cyclodextrin (β-CD). The dissociation of the supramolecular micelles was triggered in acidic environments. An antineoplastic drug, doxorubicin (DOX), was loaded into the supramolecular micelles as a model drug.

View Article and Find Full Text PDF

Biodegradable and pH-responsive carboxymethyl cellulose/poly(acrylic acid) hybrid hydrogels are synthesized. The hydrogels deswell in acidic artificial gastric fluid (AGF) but rapidly swell in neutral artificial intestinal fluid (AIF), rendering selective enzymatic degradation of the gels as well as accelerated drug release from insulin-loaded hydrogels in AIF. Oral administration of insulin-loaded hydrogels to streptozotocin-induced diabetic rats leads to a continuous decline in the fasting blood glucose level within 6 h post-administration, and the relative pharmacological availability increases more than 10 times compared to oral administration of free insulin solution.

View Article and Find Full Text PDF

Protein-based hydrogels usually do not exhibit high stretchability or toughness, significantly limiting the scope of their potential biomedical applications. Here we report the engineering of a chemically cross-linked, highly elastic and tough protein hydrogel using a mechanically extremely labile, de novo-designed protein that assumes the classical ferredoxin-like fold structure. Due to the low mechanical stability of the ferredoxin-like fold structure, swelling of hydrogels causes a significant fraction of the folded domains to unfold.

View Article and Find Full Text PDF

A series of pH- and temperature-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) (P(NIPAM-co-AAD)) copolymers and hydrogels were prepared. The lower critical solution temperatures (LCSTs) of the copolymers exhibited a dependence on both pH and the hydrophobicity of the AAD unit. The influence of pH and temperature on the equilibrium swelling ratio of the hydrogels was investigated.

View Article and Find Full Text PDF

A polypeptide-based double hydrophilic graft copolymer was synthesized by the sequential grafting of poly(N-isopropylacrylamide) (PNIPAM) and 2-hydroxyethyl methacrylate (HEMA) onto poly(l-glutamic acid) (PGA) backbone. The copolymers were sensitive to both temperature and pH. The phase transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering (DLS).

View Article and Find Full Text PDF