Publications by authors named "Xiaoyang Deng"

Effectively controlling the electronic configuration of metal sites within single-atom catalysts (SACs) is essential for improving their oxygen reduction reaction (ORR) performance. Here, we construct hybrid catalysts featuring Fe single atoms and FeO clusters (Fe SACs/FeO@NHPC) to realize highly efficient ORR. Specifically, the Fe SACs/FeO@NHPC delivers a remarkable half-wave potential (E) of 0.

View Article and Find Full Text PDF

Transition metal double hydroxides (LDHs) are among the most promising electrode materials in electrochemical energy storage. In this study, we synthesized electrodeposited nickel-cobalt layered double hydroxide (NiCo-LDH) to investigate the significant capacity gap in LDHs at different scan rates in an alkaline electrolyte. Experimental results demonstrate that the degradation of capacity at high scan rates is primarily attributed to the slow ion diffusion and the decreased reversibility of active metal ions.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) are considered a promising device for next-generation energy storage due to their high safety and low cost. However, developing high-performance cathodes that can be matched with zinc metal anodes remains a challenge in unlocking the full potential of AZIBs. In this study, a typical transition metal layered double hydroxides (NiCo-LDHs) can be in situ reconstructed to NiCo-LDHs/Ni(Co)OOH heterostructure using an electrochemical cycling activation (ECA) method, serving as a novel cathode material for AZIBs.

View Article and Find Full Text PDF

Bismuth (Bi) has attracted attention as a promising anode for sodium-ion batteries (SIBs) owing to its suitable potential and high theoretical capacity. However, the large volumetric changes during cycling leads to severe degradation of electrochemical performance and limits its practical application. Herein, Bi nanoflowers are encapsulated in N-doped carbon frameworks to construct a novel Bi@NC composite via a facile solvothermal method and carbonization strategy.

View Article and Find Full Text PDF

Epithelial ovarian carcinoma (EOC) is one of the most common gynecologic malignancies with a high mortality rate. Serum biomarkers and imaging approaches are insufficient in identifying EOC patients at an early stage. This study is to set up a combination of proteins from serum small extracellular vesicles (sEVs) for the diagnosis of early-stage EOC and to determine its performance.

View Article and Find Full Text PDF

Diarrhoea is a widespread disease in captive rhesus macaques (Macaca mulatta) and a small proportion of individuals may experience persistent diarrhoea. Persistent diarrhoea can lead to a compromised immune system, intestinal inflammation and malnutrition. We analyzed the blood transcriptomes of 10 persistent diarrhoeal and 12 healthy rhesus macaques to investigate the gene expression differences between the two groups.

View Article and Find Full Text PDF

Introduction: There is a lot of evidence that suggests that microRNAs (miRs) play an imperative role in the pathogenesis of polycystic ovary syndrome (PCOS). This study was designed to decipher the role of miR-125b in PCOS pathogenesis.

Material And Methods: Expression analysis of miR-125b was determined by real-time quantitative polymerase chain reaction and the KGN ovarian granulosa cell viability was examined by CCK-8 assay.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disease. Fatigue is the most common symptom of MS patients, affecting >80% subjects. Medical treatment is an important method for managing fatigue.

View Article and Find Full Text PDF

In order to improve the electrical conductivity of metal-organic frameworks (MOFs) which have drawn remarkable attention owing to their potential application in the energy storage field, a Co-based zeolitic imidazolate framework (ZIF-67) polyhedron was in situ integrated into a three-dimensional carbon network (3DCN) to construct a Ball-in-Cage (BIC) nanostructure. The introduced 3DCN acting as the electronic pathway can provide nucleation sites for MOF particles; consequently, further growth of the MOF particles is limited by the size effect of 3DCN. The BIC frame not only controls the MOF particle size, but also ensures a high electron conductivity of the entire structure.

View Article and Find Full Text PDF