Preparing low-cost and highly efficient electrocatalysts for the hydrogen evolution reaction using a simple strategy still faces challenges. In this work, we proposed a facile phosphating process to successfully transform CoFe-BTC (BTC = 1,3,5-benzenetricarboxylate) precursors into carbon-incorporated bimetallic phosphide (CoFe-P/C) nanospheres. Due to the synergistic effect between bimetals and uniformly covered carbon shells outside, the as-synthesized porous bimetallic phosphide nanospheres exhibit superior HER activity, enhanced kinetics, and excellent cycle durability in both acidic and alkaline solutions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
Defect engineering is a reasonable solution to improve the surface properties and electronic structure of nanomaterials. However, how to introduce dual defects into nanomaterials by a simple way is still facing challenge. Herein, we propose a facile two-step solvothermal method to introduce Fe dopants and S vacancies into metal-organic framework-derived bimetallic nickel cobalt sulfide composites (NiCo-S).
View Article and Find Full Text PDFNanotechnology
September 2021
During the past decades, nano-structured metal oxide electrode materials have received growing attention due to their low development cost and high theoretical specific capacity, accordingly, quite a lot of metal oxide electrode materials are being used in electrochemical energy storage devices. However, the further development was limited by the relatively low electrical conductivity and the volume expansion during electrochemical reactions. Thus, many approaches have been proposed to obtain high-efficiency metal oxide electrode materials, such as designing nanomaterials with ideal morphology and high specific surface area, optimizing with carbon-based materials (such as graphene and glucose) to prepare nanocomposites, combining with conductive substrates to enhance the conductivity of electrodes, etc.
View Article and Find Full Text PDF