Optical chaos communication is a promising secure transmission technique because of the advantages of high speed and compatibility with existing fiber-optic systems. The deterioration of chaotic synchronization quality caused by fiber optic transmission impairments affects the quality of recovery of information, especially high-order modulated signals. Here, we demonstrate that the use of a convolutional neural network (CNN) with a bidirectional long short-term memory (LSTM) layer can reduce the decryption BER in an optical chaos communication system based on common-signal-induced semiconductor laser synchronization.
View Article and Find Full Text PDFOptical chaos communication encounters difficulty in high-speed transmission due to the challenge of realizing wideband chaos synchronization. Here, we experimentally demonstrate a wideband chaos synchronization using discrete-mode semiconductor lasers (DMLs) in a master-slave open-loop configuration. The DML can generate wideband chaos with a 10-dB bandwidth of 30 GHz under simple external mirror feedback.
View Article and Find Full Text PDFWe numerically investigate the effects of probabilistic shaping on the performance improvement of coherent optical chaos communication. Results show that the decryption bit-error ratio (BER) of the 16-ary quadrature amplitude modulation (QAM) signal decreases upon increasing the probabilistic shaping factor. It is predicted that the BER of 10-GBd 16QAM can be decreased by one order of magnitude.
View Article and Find Full Text PDFThe instability of optical phase chaos synchronization between semiconductor lasers under master-slave open-loop configuration is investigated. The phase difference between the master and slave lasers is obtained and analyzed in experiment by heterodyne detection and Hilbert transform, and in simulation by solving the rate equations. The results show that the phase difference only maintains in a short duration time and then jumps to another value.
View Article and Find Full Text PDFWe propose and numerically demonstrate a scheme of coherent optical chaos communication using semiconductor lasers for secure transmission of optical quadrature amplitude modulation (QAM) signals. In this scheme, a laser intensity chaos and its delayed duplicate are used to amplitude-quadrature modulate a continuous-wave light to generate a chaotic carrier. High-quality chaotic carrier synchronization between the transmitter and receiver is guaranteed by laser intensity chaos synchronization, avoiding laser phase fluctuation.
View Article and Find Full Text PDFThree-dimensional simulations of coronary artery using finite element analysis are considered as effective means to understand the biomechanical properties after the stent was deployed. Bioresorbable vascular scaffolds are new-generation stents used by people. Intravascular optical coherence tomography is an emerging technique for detecting struts.
View Article and Find Full Text PDF