Publications by authors named "Xiaoxia Shao"

Article Synopsis
  • The existing ECG criteria for diagnosing left bundle branch block (LBBB) struggle to effectively differentiate between true complete LBBB (t-LBBB) and false complete LBBB (f-LBBB).
  • Researchers conducted a study involving 37 patients scheduled for cardiac resynchronization therapy (CRT), examining the QRS notch width in lateral leads to improve diagnostic accuracy.
  • They found significant differences in how the QRS notch peaks correlated with the electrical activity of the heart between t-LBBB and f-LBBB groups, offering insights for more reliable diagnosis.
View Article and Find Full Text PDF

G protein-coupled receptor 83 (GPR83) is primarily expressed in the brain and is implicated in the regulation of energy metabolism and some anxiety-related behaviours. Recently, the PCSK1N/proSAAS-derived peptide PEN, the procholecystokinin-derived peptide proCCK56-63, and family with sequence similarity 237 member A (FAM237A) were all reported as efficient agonists of GPR83. However, these results have not yet been reproduced by other laboratories and thus GPR83 is still officially an orphan receptor.

View Article and Find Full Text PDF

Recently, liver-expressed antimicrobial peptide 2 (LEAP2) was identified as an endogenous antagonist and an inverse agonist of the ghrelin receptor GHSR. However, its functions in lower vertebrates are not well understood. Our recent study demonstrated that both LEAP2 and ghrelin are functional towards a fish GHSR from Latimeria chalumnae, an extant coelacanth believed to be one of the closest ancestors of tetrapods.

View Article and Find Full Text PDF

The orexigenic peptide ghrelin exerts important functions in energy metabolism and has therapeutic potential to treat certain diseases. Native ghrelin carries an essential -fatty acyl moiety; however, this post-translational modification is susceptible to hydrolysis by certain esterases in circulation, representing a major route of its in vivo inactivation. In the present study, we developed a novel approach to prepare various esterase-resistant ghrelin analogs via photoinduced thiol-ene click chemistry.

View Article and Find Full Text PDF

Objectives: We aimed to evaluate the feasibility of left ventricular electroanatomical mapping to choose between left bundle branch area pacing (LBBAP) or coronary venous pacing (CVP).

Background: There are several ways to achieve left ventricular activation in cardiac resynchronization therapy (CRT): LBBAP and CVP are two possible methods of delivering CRT. However, the criteria for choosing the best approach remains unknown.

View Article and Find Full Text PDF

In recent years, some peptide ligases have been identified, such as bacterial sortases and certain plant asparaginyl or prolyl endopeptidases. Peptide ligases have wide applications in protein labelling and cyclic peptide synthesis. To characterize various known peptide ligases or identify new ones, we propose a general bioluminescent activity assay via the genetic fusion of a recognition motif of peptide ligase(s) to the C-terminus of an inactive large NanoLuc fragment (LgBiT) and the chemical introduction of a nucleophilic motif preferred by the peptide ligase(s) to the N-terminus of the low-affinity SmBiT complementation tag.

View Article and Find Full Text PDF

Oxidative stress plays a crucial role in the pathophysiology of diastolic dysfunction associated with diabetic cardiomyopathy. Novel oral edaravone (OED) alleviates oxidative stress by scavenging free radicals and may be suitable for the treatment of chronic diseases such as diabetic cardiomyopathy. Oral administration of OED to type 2 diabetic rats (induced by high-sugar/high-fat diet and intraperitoneal injection of streptozotocin) for 4 w decreased malondialdehyde and increased superoxide dismutase.

View Article and Find Full Text PDF

Recent studies have demonstrated that liver-expressed antimicrobial peptide 2 (LEAP2) antagonizes the ghrelin receptor GHSR1a in mammals. However, its antagonistic function in lower vertebrates has not yet been tested. LEAP2 orthologs have been identified from a variety of fish species; however, previous studies all focused on their antimicrobial activity.

View Article and Find Full Text PDF

The gastric peptide ghrelin has important functions in energy metabolism and cellular homeostasis by activating growth hormone secretagogue receptor type 1a (GHSR1a). The N-terminal residues of ghrelin orthologs from all vertebrates are quite conserved; however, in orthologs from Cavia porcellus and Phyllostomus discolor, Ser2 and Leu5 are replaced by a smaller Ala and a positively charged Arg, respectively. In the present study, we first demonstrated that the hydrophobic Leu5 is essential for the function of human ghrelin, because Ala replacement caused an approximately 100-fold decrease in activity.

View Article and Find Full Text PDF

Relaxin family peptide receptor 3 (RXFP3) is a G protein-coupled receptor implicated in the regulation of food intake and stress response upon activation by the neuropeptide relaxin-3. In recent studies, interactions of RXFP3 with some natural or synthetic ligands have been investigated. In the present study, we identified the hydrophobic interactions of human RXFP3 with the chimeric agonist R3/I5 and the chimeric antagonist R3(ΔB23-27)R/I5 using a newly developed NanoBiT-based homogenous binding assay.

View Article and Find Full Text PDF

Liver-expressed antimicrobial peptide 2 (LEAP2) was recently identified as a competitive antagonist for the G protein-coupled receptor GHSR1a, the cognate receptor for the gastric peptide ghrelin. LEAP2 plays important functions in energy metabolism by tuning the ghrelin-GHSR1a system. However, the molecular mechanism by which LEAP2 binds to GHSR1a is largely unknown.

View Article and Find Full Text PDF

Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled receptors, namely relaxin family peptide receptor 1-4 (RXFP1-4). We recently disclosed electrostatic interactions of the homologous RXFP3 and RXFP4 with some agonists based on activation complementation. However, this activation assay-based approach cannot be applied to antagonists that do not activate receptors.

View Article and Find Full Text PDF

Liver-expressed antimicrobial peptide 2 (LEAP2) is a highly conserved secretory peptide first isolated in 2003. However, its exact biological functions remained elusive until a recent study identified it as an endogenous antagonist for the growth hormone secretagogue receptor (GHSR1a), a G protein-coupled receptor for which the gastric peptide ghrelin is the endogenous agonist. By tuning the ghrelin-GHSR1a system, LEAP2 has an important function in energy metabolism.

View Article and Find Full Text PDF

The insulin superfamily is a group of homologous proteins that are further divided into the insulin family and relaxin family according to their distinct receptors. All insulin superfamily members contain three absolutely conserved disulfide linkages and a nonchiral Gly residue immediately following the first B-chain cysteine. The functionality of this conserved Gly residue in the insulin family has been studied by replacing it with natural L-amino acids or the corresponding unnatural D-amino acids.

View Article and Find Full Text PDF

Background: Intrahepatic cholangiocarcinomas (ICCs) are primary liver malignancies and are the second most common type of malignancy after hepatocellular carcinoma. ICCs are heterogeneous in clinical features, genotype, and biological behavior, suggesting that ICCs can initiate in different cell lineages.

Aim: We investigated intrahepatic cholangiocarcinoma RBE cell lines for the markers neural cell adhesion molecule (NCAM) and c-Kit, which possess hepatic progenitor cells properties.

View Article and Find Full Text PDF

Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled receptors, namely RXFP1-4. Our recent study demonstrated that selectivity of the chimeric relaxin family peptide R3/I5 towards the homologous RXFP3 and RXFP4 can be modulated by replacement of the highly conserved nonchiral B23Gly or B24Gly with some natural l-amino acids. To investigate the mechanism of this modulating effect, in the present study we incorporated unnatural amino acids into the B23 or B24 position of a semi-synthetic R3/I5 that was prepared by a novel sortase-catalysed ligation approach using synthetic relaxin-3 B-chain and recombinant INSL5 A-chain.

View Article and Find Full Text PDF

Peer instruction has been used extensively in lecture courses; however, there is little evidence of its use in laboratory courses. The purpose of the present study was to describe the implementation of the peer instruction method in a physiology laboratory course in China. Second-year medical students attended a 6-wk physiology laboratory course in the fall semester of the 2016-2017 school year.

View Article and Find Full Text PDF

Relaxin family peptides perform a variety of biological functions by binding and activating relaxin family peptide receptor 1-4 (RXFP1-4), four A-class G protein-coupled receptors. In the present work, we developed a novel ligand binding assay for RXFP3 and RXFP4 based on NanoLuc complementation technology (NanoBiT). A synthetic ligation version of the low-affinity small complementation tag (SmBiT) was efficiently ligated to the A-chain N terminus of recombinant chimeric agonist R3/I5 using recombinant circular sortase A.

View Article and Find Full Text PDF

Relaxin family peptide receptor 3 (RXFP3) is implicated in the regulation of food intake and stress response upon activation by its cognate agonist relaxin-3. As an A-class G protein-coupled receptor, RXFP3 is an integral plasma membrane protein with seven transmembrane domains, yet influence of the membrane lipids on its function remains unknown. In the present study, we disclosed that cholesterol, an essential membrane lipid for mammalian cells, modulated the binding properties of human RXFP3 with its ligands.

View Article and Find Full Text PDF

Relaxin family is a group of peptide hormones with a variety of biological functions by activating G protein-coupled receptors RXFP1-4. We recently developed bioluminescent tracers for their receptor-binding assays by chemical conjugation with the ultrasensitive NanoLuc reporter. To simplify preparation of the bioluminescent tracers, in the present study, we established a sortase-catalysed ligation approach using the chimeric R3/I5 as a model.

View Article and Find Full Text PDF

Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled receptors, namely RXFP1-4. Among these receptors, RXFP3 lacks a specific natural or synthetic agonist at present. A previously designed chimeric R3/I5 peptide, consisting of the B-chain of relaxin-3 and the A-chain of INSL5, displays equal activity towards the homologous RXFP3 and RXFP4.

View Article and Find Full Text PDF

Conotoxins are a pool of disulfide-rich peptide neurotoxins produced by cone snails for predation and defense. They are a rich reservoir of novel ligands for ion channels, neurotransmitter receptors and transporters in the nervous system. In this study, we identified a novel conotoxin component, O-conotoxin GeXXVIIA, from the venom of .

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) play a fundamental role in nervous signal transmission, therefore various antagonists and agonists are highly desired to explore the structure and function of nAChRs. Recently, a novel dimeric αD-conotoxin GeXXA was identified to inhibit nAChRs by binding at the top surface of the receptors, and the monomeric C-terminal domain (CTD) of αD-GeXXA retains some inhibitory activity. In this study, the internal dimeric N-terminal domain (NTD) of this conopeptide was further investigated.

View Article and Find Full Text PDF

Insulin-like peptide 5 (INSL5) is a gut peptide hormone belonging to the insulin/relaxin superfamily. It is implicated in the regulation of food intake and glucose homeostasis by activating relaxin family peptide receptor 4 (RXFP4). Previous studies have suggested that the B-chain is important for INSL5 activity against RXFP4.

View Article and Find Full Text PDF