Poor selectivity to tumor cells is a major drawback in the clinical application of the antitumor drug doxorubicin (DOX). Peptide-drug conjugates (PDCs) constructed by modifying antitumor drugs with peptide ligands that have high affinity to certain overexpressed receptors in tumor cells are increasingly assessed for their possibility of tumor-selective drug delivery. However, peptide ligands composed of natural L-configuration amino acids have the defects of easy enzymatic degradation and insufficient biological stability.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
April 2024
The deoxynivalenol (DON)-contaminated feeds can impair chicken gut barrier function, disturb the balance of the intestinal microbiota, decrease chicken growth performance and cause major economic loss. With the aim of investigating the ameliorating effects of baicalin on broiler intestinal barrier damage and gut microbiota dysbiosis induced by DON, a total of 150 Arbor Acres broilers are used in the present study. The morphological damage to the duodenum, jejunum, and ileum caused by DON is reversed by treatment with different doses of baicalin, and the expression of tight junction proteins (ZO-1, claudin-1, and occludin) is also significantly increased in the baicalin-treated groups.
View Article and Find Full Text PDFConventional methods for nitrile synthesis bring inherent environmental risks due to their reliance on oxidants and harsh reaction conditions. Meanwhile, direct electrooxidation of amines to nitriles suffers from low current density. In this study, we propose an innovative indirect electrooxidation strategy for nitrile formation, mediated by Br/Br, utilizing a highly efficient CoS/CoS@Graphite Felt (GF) electrode.
View Article and Find Full Text PDFBioreactors with environment responsiveness for smart detection has attracted widespread interest. Bioreactors that operate in liquid have excellent reaction speed and sensitivity, and those that operate at a solid interface have unique portability and stability. However, bioreactors that can simultaneously take advantage of both properties are still limited.
View Article and Find Full Text PDFElectrochemical seawater splitting is an intriguing strategy for green hydrogen production. Constructing advanced electrocatalysts for the hydrogen evolution reaction (HER) in seawater is extremely demanded for accelerating the sluggish kinetic process. Herein, a Ru nanocluster anchored on boron- and nitrogen-doped carbon (Ru/NBC) catalyst was successfully synthesized for the HER in alkaline/seawater electrolytes.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are important biomacromolecules used as biomarkers for the diagnosis of several diseases. However, current detection strategies are limited by expensive equipment and complicated procedures. Here, we develop a portable, sensitive, and stable (Eu-MOF)-based sensing platform to detect miRNA via smartphone.
View Article and Find Full Text PDFBaicalin magnesium is a water-soluble compound isolated from the aqueous solution by Scutellaria baicalensis Georgi. Preliminary experiments have demonstrated that baicalin magnesium can exert protective effects against acute liver injury in rats induced by carbon tetrachloride or lipopolysaccharide combined with d-galactose by regulating lipid peroxidation and oxidative stress. The aim of this study was to investigate the protective effect of baicalin magnesium on non-alcoholic steatohepatitis (NASH) in rats and to elucidate the underlying mechanisms.
View Article and Find Full Text PDFA novel Z-scheme heterostructure photocatalyst, CoFeN-g-CN (CFN-CN), was prepared by a simple strategy, and its heterostructure and a photo-Fenton system were used to synergistically catalyze the degradation of azo dyes. The experimental results showed that the CFN-CN1 heterojunction exhibited superior photocatalytic degradation performance, and the degradation rate of Methyl Orange (MO) reached 96.8% in 40 min.
View Article and Find Full Text PDFNano-ferroelectric materials have excellent piezoelectric performance and can degrade organic dye by ultrasonic vibration in an aqueous solution. Here, BaTiO (BT) nanoparticles were prepared by a sol-gel/hydrothermal method and further applied in dye degradation in wastewater. BT nanoparticles exhibited excellent catalytic performance for organic dye molecule degradation through the piezo-Fenton synergistic effect.
View Article and Find Full Text PDFCell-free DNA (cfDNA), as a tumor marker, is of great importance for the diagnosis of cancer and targeted therapy. However, the need for huge analytical instruments for cfDNA analysis has restricted its practical applications, especially in rural areas and third-world countries. Herein, a portable and visual smartphone-based DNAzyme hydrogel platform is developed for cfDNA detection.
View Article and Find Full Text PDFElectrocatalytic CO reduction (ECR) into valuable chemicals, especially driven by renewable energy, presents a promising pattern to realize carbon neutrality. Site-isolated metal complexes flourish in the area of ECR as single-atom-like catalysts because of their competent and tailorable activity. In this study, salophen-based metal (Fe, Co, Ni and Cu) complexes were anchored onto carbon nanotubes (CNTs) to construct efficient catalysts for electrochemically converting CO to CO.
View Article and Find Full Text PDFA method is presented that uses photoinduced electron transfer (PET) for the determination of microRNAs (miRNAs) in clinical serum samples and complicated cell samples by using a smartphone. miRNA-21 is adopted as a model analyte. A 3'-phosphorylated DNA probe containing AgNCs is synthesized and hybridized with miRNA-21.
View Article and Find Full Text PDFBalancing operability and performance has long been a focus of research in bioanalysis and biosensing. In this work, between the traditional wet chemistry and dry chemistry, we develop a semi-dry smart biosensing platform with favourable operability and performance for metal ions detection. This platform is based on the integration of a stimuli-responsive hydrogel with intelligent image recognition.
View Article and Find Full Text PDFElectrochemical biosensing relies on electron transport on the electrode surface. However, the limited functional area of the two-dimensional electrode prevents the qualitative breakthrough in the efficiency of electron transfer. Here, a three-dimensional electron transporter was constructed to improve the efficiency of electron transfer by using an interface-immobilized DNA hydrogel.
View Article and Find Full Text PDFA luminescent metal-organic framework of type Eu(III)-MOF has been fabricated for visual and on-site fluorometric determination of hydrogen peroxide (HO) via a tablet computer. The maximum excitation and emission peaks of type Eu(III)-MOF were found at λex = 290 nm and λem = 615 nm, respectively. The average length of Eu-MOF is 1.
View Article and Find Full Text PDFPurpose: Transferrin receptors (TfRs) are overexpressed in tumor cells but are scarce in normal tissues, which makes TfR an attractive target for drug treatment of cancer. The objective of this study was to evaluate the potential of BP9a (CAHLHNRS) as a peptide vector for constructing TfR targeted peptide-drug conjugates and selective drug delivery.
Methods: Doxorubicin (DOX) was connected to BP9a via a disulfide-intercalating linker to afford a reduction-responsive BP9a-SS-DOX conjugate.
Overexpression of gonadotropin-releasing hormone (GnRH) receptor in many tumors but not in normal tissues makes it possible to use GnRH analogs as targeting peptides for selective delivery of cytotoxic agents, which may help to enhance the uptake of anticancer drugs by cancer cells and reduce toxicity to normal cells. The GnRH analogs [d-Cys , desGly , Pro -NH ]-GnRH, [d-Cys , desGly , Pro -NHEt]-GnRH, and [d-Cys , α-aza-Gly -NH ]-GnRH were conjugated with doxorubicin (Dox), respectively, through N-succinimidyl-3-maleimidopropionate as a linker to afford three new GnRH-Dox conjugates. The metabolic stability of these conjugates in human serum was determined by RP-HPLC.
View Article and Find Full Text PDFHere we report a robust and sensitive DNA nanostructure-based electrochemical (E-nanoDNA) sensor that utilizes tetrahedral DNA nanostructures (TDNs) as an interfacial probe to detect biomolecules in a single-step procedure. In this study, we have firstly demonstrated that the use of TDNs can significantly suppress electrochemical background signals compared to traditional linear DNA probes upon introduction of base mismatches in the edges of TDNs. After further optimization of the two functional strands in the TDNs, quantitative, one-step detection of DNA can be achieved in the picomolar range in less than 10 min, and directly in complex media.
View Article and Find Full Text PDFHydrogels are of great interest in the field of biosensing for their good biocompatibility, plasticity, and capability of providing 3D scaffolds. Nevertheless, the application of hydrogels has not been linked with broad surface biosensing systems yet. To overcome the limitations, here for the first time, surface-immobilized pure DNA hydrogels were synthesized using a surficial primer-induced strategy and adopted for biosensing applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
The use of emerging nanocatalysts to investigate the activity of biocatalysts (protein enzymes, catalytic RNAs, etc.) is increasingly receiving attention from material, analytic, and biomedical scientists. Here, we have first fabricated a three-in-one nanocatalyst, the nitrilotriacetic acid (NTA)-modified magnetite nanoparticle (NTA-MNP), to develop an integrated magneto-colorimetric (MagColor) assay for lipid kinase activity so as to solve the inherent problems in a lipid kinase assay.
View Article and Find Full Text PDFToehold-mediated DNA strand displacement reaction (SDR) plays pivotal roles for the construction of diverse dynamic DNA nanodevices. To date, many elements have been introduced into SDR system to achieve controllable activation and fine regulation. However, as the most relevant stimuli for nucleic acid involved reaction, nucleic acid-recognizing enzymes (NAEs) have received nearly no attention so far despite SDR often takes place in NAEs-enriched environment (i.
View Article and Find Full Text PDFLaborious and costly detection of miRNAs has brought challenges to its practical applications, especially for home health care, rigorous military medicine, and the third world. In this work, we present a pH-responsive miRNA amplification method, which allows the detection of miRNA just using a pH test paper. The operation is easy and no other costly instrument is involved, making the method very friendly.
View Article and Find Full Text PDFA simple colorimetric assay is developed for the sensitive and selective detection of an antibody, which combines a protein binding-induced signaling approach with a novel DNAzyme-based conformational switching strategy.
View Article and Find Full Text PDFBoth the 3D solution and the 2D interface play important roles in bioanalysis. For the former, reactions can be carried out adequately; while for the latter, interfering substance can be eliminated simply through wash. It is a challenge to integrate the advantages of solution-based assays and the interface-based assays.
View Article and Find Full Text PDFIn this work, we succeeded in establishing a new method for proteins and small molecules analysis based on the small molecule-linked DNA and nucleic acid hyperbranched rolling circle amplification (HRCA). Small molecule linked DNA by chemical modification was used as a flexible tool to study protein-small molecule interactions. The HRCA reaction which would produce signal amplification was regulated by the steric effect depending on whether the target proteins were present.
View Article and Find Full Text PDF