Publications by authors named "Xiaoxi Luan"

Optical information encryption technology has garnered significant attention in currency security, information protection, and personal identification. While optical metasurfaces are considered ideal platforms for information encryption, their high cost and time-intensive fabrication processes have limited their widespread applications. To address this, emergent chiroptical nanomaterials offer new opportunities for information encryption through their polarization capabilities.

View Article and Find Full Text PDF

Helicoid plasmonic nanoparticles with intrinsic chirality are an emerging class of artificial chiral materials with tailorable properties. The ability to extend their chiroplasmonic responses to the near-infrared (NIR) range is critically important for biomedical and nanophotonic applications, yet the rational design of such materials remains challenging. Herein, a strategy employing chiral plasmon-dielectric coupling is proposed to manipulate the chiroptical responses into the NIR region with high optical anisotropy.

View Article and Find Full Text PDF

The chiral discrimination of enantiomers is crucial for drug screening and agricultural production. Surface-enhanced Raman scattering (SERS) is proposed for discriminating enantiomers benefiting from chiral plasmonic materials. However, the mechanism of enantioselective SERS is unclear, and fluctuating SERS intensities may result in errors.

View Article and Find Full Text PDF

Surface roughness in chiral plasmonic nanostructures generates asymmetrical localized electromagnetic fields, which hold great promise for applications in chiral recognition, chiroptical spectroscopic sensing, and enantioselective photocatalysis. In this study, we develop a surface topographical engineering approach to precisely manipulate the surface structures of chiral Au nanocrystals. Through carefully controlling the amounts of l- or d-cystine (Cys) and the seed solution in the growth process, we successfully synthesize chiral Au nanocrystals with highly disordered, ordered, and less ordered wrinkled surfaces.

View Article and Find Full Text PDF

Metal surfaces with intrinsic chirality play an irreplaceable role in many significant enantioselective chemical processes such as enantioselective catalysis, sensing, and separation. Nonetheless, current methods for the precise preparation of such chiral surfaces suffer with issues of unscalable production and low surface areas. Herein, we report the synthesis of chiral Au nanoparticles with precisely determined homochiral facets.

View Article and Find Full Text PDF