Publications by authors named "Xiaowen Shan"

Article Synopsis
  • - Metastability in liquids affects phase transformation processes like nucleation and cavitation, influenced mainly by intermolecular interactions and thermal fluctuations.
  • - The Shan-Chen lattice Boltzmann model excels in simulating hydrodynamics in metastable states, providing precise theoretical and numerical results for density fluctuations across various conditions.
  • - As temperature nears the critical point or density reaches the spinodal line, the static structure factor shows significant divergence, and critical exponents align with theoretical predictions, mirroring patterns noted in molecular dynamics simulations.
View Article and Find Full Text PDF

In petroleum, petrochemicals, metallurgy, and chemical industries, a significant volume of oily wastewater is unavoidably generated throughout the production processes. This not only harms the environment but also brings about diverse adverse effects on social and economic progress. In this study, copper mesh separation membranes exhibiting superhydrophobicity and superhydrophilicity/underwater superoleophobicity were fabricated through oxidation, chemical vapor deposition, and other physical and chemical modification techniques.

View Article and Find Full Text PDF

In the present work, the force term is first derived in the spectral multiple-relaxation-time high-order lattice Boltzmann model. The force term in the Boltzmann equation is expanded in the Hermite temperature rescaled central moment space (RCM), instead of the Hermite raw moment space (RM). The contribution of nonequilibrium RCM moments beyond second order are neglected.

View Article and Find Full Text PDF

Fixed-wing vertical take-off and landing (VTOL) UAVs have received more and more attention in recent years, because they have the advantages of both fixed-wing UAVs and rotary-wing UAVs. To meet its large flight envelope, the VTOL UAV needs accurate measurement of airflow parameters, including angle of attack, sideslip angle and speed of incoming flow, in a larger range of angle of attack. However, the traditional devices for the measurement of airflow parameters are unsuitable for large-angle measurement.

View Article and Find Full Text PDF

We demonstrate that the multiphase Shan-Chen lattice Boltzmann method (LBM) yields a curvature dependent surface tension σ as computed from three-dimensional hydrostatic droplets and bubbles simulations. Such curvature dependence is routinely characterized, at first order, by the so-called Tolman length δ. LBM allows one to precisely compute σ at the surface of tension R_{s} and determine the Tolman length from the coefficient of the first order correction.

View Article and Find Full Text PDF

The Bhatnagar-Gross-Krook (BGK) single-relaxation-time collision model for the Boltzmann equation serves as the foundation of the lattice BGK (LBGK) method developed in recent years. The description of the collision as a uniform relaxation process of the distribution function towards its equilibrium is, in many scenarios, simplistic. Based on a previous series of papers, we present a collision model formulated as independent relaxations of the irreducible components of the Hermite coefficients in the reference frame moving with the fluid.

View Article and Find Full Text PDF

We systematically analyze the tensorial structure of the lattice pressure tensors for a class of multiphase lattice Boltzmann models (LBM) with multirange interactions. Due to lattice discrete effects, we show that the built-in isotropy properties of the lattice interaction forces are not necessarily mirrored in the corresponding lattice pressure tensor. This finding opens a different perspective for constructing forcing schemes, achieving the desired isotropy in the lattice pressure tensors via a suitable choice of multirange potentials.

View Article and Find Full Text PDF

We point out that the minimal components of the tensorial moments of the distribution that can be independently relaxed in collision without violating rotational symmetry are its irreducible representation (irrep) of SO(3), and a generic multiple-relaxation-time collision model can be constructed by independently relaxing these components. As the simplest example the irreps of the second moment are the traceless deviatoric stress and an isotropic tensor which is conserved in monatomic gases. Applying the decomposition to the thermal lattice Boltzmann model for polyatomic gases [Phys.

View Article and Find Full Text PDF

It is of great clinical importance to explore more efficacious treatments for OCD. Recently, cognitive-coping therapy (CCT), mainly focusing on recognizing and coping with a fear of negative events, has been reported as an efficacious psychotherapy. However, the underlying neurophysiological mechanism remains unknown.

View Article and Find Full Text PDF

The liquid-gas density ratio is a key property of multiphase flow methods to model real fluid systems. Here, a chemical-potential multiphase lattice Boltzmann method is constructed to realize extremely large density ratios. The simulations show that the method reaches very low temperatures, at which the liquid-gas density ratio is more than 10^{14}, while the thermodynamic consistency is still preserved.

View Article and Find Full Text PDF

Aiming at systematically correcting the non-Galilean-invariant thermal diffusivity in the previous multiple-relaxation-time Boltzmann equation collision model [Shan and Chen, Int. J. Mod.

View Article and Find Full Text PDF

We postulate that the relaxations of the distribution function in the lattice Boltzmann model should be self-similar under temperature scaling. Based on this postulation, a multiple-relaxation-time collision model in the relative, temperature-scaled reference frame is devised with Hermite expansion. Resorting to the relation between the Hermite basis with the temperature-scaled relative velocity and the Hermite basis with the raw velocity, the relaxations in the temperature-scaled reference frame can be converted to those in the raw reference frame with some correction terms to eliminate the cross-talk effects among the relaxations of different orders.

View Article and Find Full Text PDF

In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM.

View Article and Find Full Text PDF

Background: Accumulating evidence has indicated that S100B may be involved in the pathophysiology of depression. No published study has examined the effect of the antidepressant drug venlafaxine on S100B in animal models of depression. This study investigated S100B expression in the hippocampus and assessed the effect of venlafaxine on S100B mRNA level and protein expression in rats exposed to chronic unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Background: Cognitive-coping therapy (CCT), integrating cognitive theory with stress-coping theory, is an efficacious therapy for obsessive-compulsive disorder (OCD). However, the potential brain mediation for the effectiveness remains unclear. We sought to investigate differences of resting-state brain function between OCD and healthy controls and if such differences would be changed by a four-week CCT.

View Article and Find Full Text PDF

The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details.

View Article and Find Full Text PDF

Sodium aescinate (SA) is a widely-applied triterpene saponin product derived from horse chestnut seeds, possessing vasoactive and organ-protective activities with oral or injection administration in the clinic. To date, no toxicity or adverse events in SA have been reported, by using routine models (in vivo or in vitro), which are insufficient to predict all aspects of its pharmacological and toxicological actions. In this study, taking advantage of transparent zebrafish larvae (Danio rerio), we evaluated cardiovascular toxicity of SA at doses of 1/10 MNLC, 1/3 MNLC, MNLC and LC10 by yolk sac microinjection.

View Article and Find Full Text PDF
Article Synopsis
  • Pharmacotherapy plus cognitive-coping therapy (pCCT) was studied as a treatment for obsessive-compulsive disorder (OCD), comparing it with pharmacotherapy plus psychological support (PPS).
  • In a trial with 215 OCD patients, pCCT showed significantly lower symptoms on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) both in the short-term and long-term follow-ups.
  • The results indicated pCCT had higher effectiveness in reducing severity of symptoms, with better overall results for both covert and overt compulsions compared to PPS, suggesting pCCT could be a strong treatment option for adults with OCD.
View Article and Find Full Text PDF

Permeability is a key parameter for investigating the flow ability of sedimentary rocks. The conventional model for calculating permeability is derived from Darcy's law, which is valid only for continuum flow in porous rocks. We discussed the feasibility of simulating methane transport characteristics in the organic nano-pores of shale through the Lattice Boltzmann method (LBM).

View Article and Find Full Text PDF

For multiscale gas flows, the kinetic-continuum hybrid method is usually used to balance the computational accuracy and efficiency. However, the kinetic-continuum coupling is not straightforward since the coupled methods are based on different theoretical frameworks. In particular, it is not easy to recover the nonequilibrium information required by the kinetic method, which is lost by the continuum model at the coupling interface.

View Article and Find Full Text PDF

The lattice Boltzmann method (LBM) has been proved to be a useful tool in many areas of computational fluid dynamics, including computational aero-acoustics (CAA). However, for historical reasons, its applications in CAA have been largely restricted to simulations of isothermal (Newtonian) sound waves. As the recent kinetic theory-based reformulation establishes a theoretical framework in which LBM can be extended to recover the full Navier-Stokes-Fourier (NS) equations and beyond, in this paper, we show that, at least at the low-frequency limit (sound frequency much less than molecular collision frequency), adiabatic sound waves can be accurately simulated by the LBM provided that the lattice and the distribution function ensure adequate recovery of the full NS equations.

View Article and Find Full Text PDF

We derive from the continuum kinetic theory a multicomponent lattice Boltzmann model with intermolecular interaction. The resulting model is found to be consistent with the model previously derived from a lattice-gas cellular automaton [X. Shan and H.

View Article and Find Full Text PDF

We give the general solutions of lattices, i.e., velocity sets and weights, for the lattice Bhatanagar-Gross-Krook (LBGK) models on two- and three-dimensional Cartesian grids.

View Article and Find Full Text PDF

In nonideal gas lattice Boltzmann (LB) models, obtaining the correct form of the pressure tensor is essential in determining many of the statistical mechanical properties such as the surface tension and the density profile. Here we outline a general approach for calculating the pressure tensor in LB models with interactions beyond nearest neighbors. The statistical mechanical properties calculated from such a pressure tensor are shown to agree very well with those measured from numerical experiments.

View Article and Find Full Text PDF

We rigorously derive a dramatically simplified kinetic model for fluids with internal degrees of freedom. With proper discretization in velocity space, the model leads to a lattice Boltzmann model for polyatomic gases. The macroscopic recovery of correct hydrodynamics is theoretically shown and numerically validated.

View Article and Find Full Text PDF