The nonribosomal peptide synthetase (NRPS) is a highly precise molecular assembly machinery for synthesizing structurally diverse peptides, which have broad medicinal applications. Withinthe NRPS, the condensation (C) domain is a core catalytic domain responsible for the formation of amide bonds between individual monomer residues during peptide elongation. This review summarizes various aspects of the C domain, including its structural characteristics, catalytic mechanisms, substrate specificity, substrate gating function, and auxiliary functions.
View Article and Find Full Text PDFNonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that primarily controls the sequence of a product during the assembling of NRPs and thus plays a predominant role in the structural diversity of NRPs.
View Article and Find Full Text PDFOleogels, characterized by their semisolid matrix formed from liquid oil structured by gelators, are emerging as a pivotal innovation in food formulation, primarily due to their capacity to enhance the nutritional profile of products by incorporating healthier fats. This review explored the integration of oleogels into diverse food matrices, examining their impact on texture, mouthfeel, and overall sensory characteristics. Through an extensive analysis of current research, this paper illustrates the versatility of oleogels created with a variety of structuring agents across different food applications.
View Article and Find Full Text PDFFront Cell Infect Microbiol
February 2024
Purpose: The aim of the work was to analyze the metabolites of the intestinal microbiota from the patients with mild cognitive impairment (MCI) and progressive MCI due to Alzheimer's disease (AD).
Method: Two cohorts were established. The first one included 87 subjects with 30 healthy controls (NC), 22 patients with MCI due to AD, and 35 patients with AD.
Neurodegenerative disorders represent a significant and growing global health challenge, necessitating continuous advancements in diagnostic tools for accurate and early detection. This work explores the recent progress in Magnetic Resonance Imaging (MRI) techniques and their application in the realm of neurodegenerative disorders. The introductory section provides a comprehensive overview of the study's background, significance, and objectives.
View Article and Find Full Text PDFObjective: Primary Sjögren's syndrome (pSS) is a intricate autoimmune disease mainly characterized of immune-mediated destruction of exocrine tissues, such as salivary and lacrimal glands, occurring dry mouth and eyes. Although some breakthroughs in understanding pSS have been uncovered, many questions remain about its pathogenesis, especially the internal relations between exocrine glands and secretions.
Method: Transcriptomic and proteomic analyses were conducted on salivary tissues and saliva in experimental Sjögren syndrome (ESS).
tRNA methylations, including base modification and 2'--methylation of ribose moiety, play critical roles in the structural stabilization of tRNAs and the fidelity and efficiency of protein translation. These modifications are catalyzed by tRNA methyltransferases (TRMs). Some of the TRMs from yeast can fully function only by a single subunit.
View Article and Find Full Text PDFAeruginosins, a family of nonribosomal linear tetrapeptides discovered from cyanobacteria and sponges, exhibit in vitro inhibitory activity on various types of serine proteases. This family is characterized by the existence of the 2-carboxy-6-hydroxy-octahydroindole (Choi) moiety occupied at the central position of the tetrapeptide. Aeruginosins have attracted much attention due to their special structures and unique bioactivities.
View Article and Find Full Text PDFIntroduction: Mouse models are the basis for primary Sjögren's syndrome (pSS) research. However, the depth of comparisons between mice and humans in salivary gland (SG) immune cells remains limited.
Methods: The gene expression profiles of SGs from normal subjects and pSS patients were downloaded from the Gene Expression Comprehensive Database.
In addition to its role as an iron storage protein, ferritin can function as a major detoxification component in the innate immune defense, and Cu ions can also play crucial antibacterial roles in the blood clam, . However, the mechanism of interaction between iron and copper in recombinant ferritin (TgFer) remains to be investigated. In this study, we investigated the crystal structure of TgFer and examined the effects of Fe and Cu ions on the TgFer structure and catalytic activity.
View Article and Find Full Text PDFFerritin is considered to be an ubiquitous and conserved iron-binding protein that plays a crucial role in iron storage, detoxification, and immune response. Although ferritin is of critical importance for almost all kingdoms of life, there is a lack of knowledge about its role in the marine invertebrate sea cucumber (Apostichopus japonicus). In this study, we characterized the first crystal structure of A.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer malignancy worldwide and is known to have poor prognosis. The pathogenesis behind the development of HNSCC is not fully understood. Modifications on RNA are involved in many pathophysiological processes, such as tumor development and inflammation.
View Article and Find Full Text PDFDNA 5-methylcytosine modification plays an important role in the regulation of a variety of biological functions in both prokaryotic and eukaryotic organisms. Previous studies show that DNA Cytosine-5-methylation is predominantly associated with restriction-modification system in bacteria. IPF4390 is deduced to be a putative type II DNA Cytosine-5 methyltransferase from a fresh water cyanobacterium, Microcystis aeruginosa.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2020
Ferritin is an important hub of iron metabolism because it stores iron during times of iron overload and releases iron during iron deficiency. Here, we present the first crystal structure of ferritin from the marine invertebrate Dendrorhynchus zhejiangensis with a 2.3 Å resolution.
View Article and Find Full Text PDFThe 2-carboxy-6-hydroxyoctahydroindole (Choi) moiety is an essential residue for the antithrombotic activities of aeruginosins, which are a class of cyanobacterial derived bioactive linear tetrapeptides. Biosynthetic pathway of Choi is still elusive. AerF was suggested to be involved in the biosynthesis of Choi, and can be assigned to the short-chain dehydrogenase/reductase (SDR) superfamily.
View Article and Find Full Text PDFModern organic chemistry faces many difficulties in the reliable production of cyclopeptides, such as poor yields and insufficient regio- and stereoselectivity. Thioesterase (TE) shows impressive stereospecificity, region- and chemoselectivity during the cyclization of peptide substrates. The biocatalytic properties of TE provide high value for industrial applications.
View Article and Find Full Text PDFThe 2-carboxy-6-hydroxyoctahydroindole (Choi) moiety is a hallmark of aeruginosins, a class of cyanobacterial derived bioactive linear tetrapeptides that possess antithrombotic activity. The biosynthetic pathway of Choi has yet to be resolved. AerE is a cupin superfamily enzyme that was shown to be involved in the biosynthesis of Choi, but its exact role remains unclear.
View Article and Find Full Text PDFCarboxyl-terminal repeat domain (CTD) of the largest subunit Rpb1 of RNA polymerace II is essential for transcription regulation. Heptapeptide repeat of CTD of Rpb1 is phosphorylated by carboxyl-terminal repeat domain kinase (CTDK-I), composed of CTK1, CTK2 and CTK3, in order to regulate transcription and transcription associated processes. The yeast specific protein CTK3 binds to cyclin CTK2 to form a heterodimer serving as a regulational factor to control CTK1 activity by binding to CTK1.
View Article and Find Full Text PDFReaction of [Et4N][Tp*WS3] (1) with [Cu(MeCN)4]PF6, CsCl, isonicotinic acid and CuCN, and treatment of [Et4N][Tp*WS3(CuCl)3] (2)/[Et4N][{Tp*WS3Cu3Cl}2(μ-Cl)2(μ4-Cl)] (3) with AgOTf and bpp (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate; bpp = 1,3-di(4-pyridyl)propane) give rise to [Et4N]2[{Tp*WS3Cu3(CN)0.5}2(μ-Cl)2(μ4-Cl)]2(PF6)2 (4) and [(Tp*WS3Cu3)2(μ3-Cl)2(bpp)3]2(OTf)4 (5), respectively. Compounds 4 and 5 feature cluster-based rectangle and [2]catenane architecture, and both exhibit enhanced third-order nonlinear optical responses relative to those of 1.
View Article and Find Full Text PDFSix analogous two-dimensional (2D) [Tp*WSCu]-based (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) networks, namely, {[(Tp*WSCu)L](μ-N)} (2: L = 5-methyltetrazolate (Mtta); 3a: L = 5-ethyltetrazolate (Etta)) and {[(Tp*WSCu)L]BF} (3b: L = Etta; 4: L = 5-propyltetrazolate (Ptta); 5: L = 5-butyltetrazolate (Btta); 6: L = 5-pentyltetrazolate (Petta)) were synthesized by reactions of [EtN][Tp*WS] (1), [Cu(CHCN)]BF, NaN, and NHBF in different nitrile solvents (CH(CH)CN, n = 0, 1, 2, 3, and 4) under solvothermal conditions. In the structures of 2-6, each alkyl tetrazolate L as a bridging ligand was generated in situ from the "click" reaction between azide and nitrile. These 2D (6,3) networks support two types of voids wherein the pendant alkyl groups are accommodated.
View Article and Find Full Text PDFInt J Biol Macromol
February 2017