Publications by authors named "Xiaoting Liao"

Mechanical ventilation (MV) remains a cornerstone of critical care; however, its prolonged application can exacerbate lung injury, leading to ventilator-induced lung injury (VILI). Although previous studies have implicated ferroptosis in the pathogenesis of VILI, the underlying mechanisms remain unclear. This study investigated the roles of ferritinophagy in ferroptosis subsequent to VILI.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how transforming growth factor (TGF)-β1 can reduce inflammation and lung injury caused by ventilation in mice with acute respiratory distress syndrome (ARDS).
  • The researchers found that TGF-β1 helps shift macrophages from a pro-inflammatory state (M1) to a healing state (M2), thus aiding in recovery from lung injuries.
  • The results suggest that properly regulated TGF-β1 secretion is essential for resolving inflammation and tissue damage after ventilator use.
View Article and Find Full Text PDF

Deep learning techniques have offered innovative and efficient tools for accurate and automated detection of sewer defects by leveraging large-scale sewer data and advanced feature learning algorithms. However, there has been a lack of thorough characterization of the geometric properties of segmented defects, let alone systematically calculate the severity level of sewer defects and quantitatively evaluate their impacts on flood conditions in hydrodynamic models. This study proposed a comprehensive framework and related metrics to accurately and automatically detect, segment, characterize, and evaluate the impacts of sewer defects on flooded nodes and volumes by integrating a DeepLabv3+-based segmentation technique, an automated geometric characterization and severity quantification module, and a GIS and SWMM-based hydrodynamic modeling.

View Article and Find Full Text PDF

Ventilator-induced lung injury (VILI) is a lung injury induced or aggravated by mechanical ventilation. Transforming growth factor (TGF)-β1 is a cytokine that mediates immune function, enabling inflammatory attenuation and tissue repair. Here, we hypothesized that it plays an important role in the attenuation of VILI and inflammation.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a severe clinical syndrome, and ischemia-reperfusion injury is an important cause of acute kidney injury. The aim of the present study was to investigate the related genes and pathways in the mouse model of acute kidney injury induced by ischemia-reperfusion injury (IRI-AKI). Two public datasets (GSE39548 and GSE131288) originating from the NCBI Gene Expression Omnibus (GEO) database were analyzed using the R software limma package, and differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF
Article Synopsis
  • Arecoline is linked to increased risks of oral submucosal fibrosis and cancer, but its specific effects on liver cancer mechanisms were unclear; this study focuses on its impact on HepG2 hepatoma cells.
  • Researchers used bioinformatics to identify 86 differentially expressed miRNAs and 460 target genes potentially related to arecoline-induced cancers, highlighting the importance of the PI3K-AKT pathway.
  • Results showed that a low concentration of arecoline boosts the proliferation and migration of HepG2 cells by elevating specific miRNAs and key target genes like CDK1 and CCND1 while lowering RAF1 levels, suggesting a potential cancer-promoting mechanism.
View Article and Find Full Text PDF

Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation and can severely affect health. VILI appears to involve excessive inflammatory responses, but its pathogenesis has not yet been clarified. Since interleukin-17 (IL-17) plays a critical role in the immune system and the development of infectious and inflammatory diseases, we investigated here whether it plays a role in VILI.

View Article and Find Full Text PDF

Natural fabrics are gradually becoming the ideal substrate for flexible smart wearable devices due to their excellent moisture absorption, softness, and skin-friendliness. However, the bonding fastness of the conductive layer and the corresponding durability during service have not yet been well satisfied. In this report, we successfully prepared a smart wearable multifunctional protective cotton fabric with microbreathing monitoring and rapid-photothermal antibacterial abilities of bark microstructure, by combining chitosan quaternary ammonium salt (HACC) with MXene nanosheets through electrostatic self-assembly.

View Article and Find Full Text PDF

Rapid industrialization and urbanization have resulted in elevated concentrations of contaminants in the groundwaters and subsurface soils, posing a growing hazard to humans and ecosystems. The transformation of most contaminants is closely linked to the mineralogy of ferric (hydr)oxides. Sulfidation of ferric (hydr)oxides is one of the most significant biogeochemical reactions in the anoxic environments, causing reductive dissolution and recrystallization of ferric (hydr)oxides and further affecting the transformation of iron-associated contaminants.

View Article and Find Full Text PDF

Two-dimensional material titanium carbide (TiCT MXene) has been widely used for building diverse functional materials; however, the disadvantages of unsatisfactory yield and low concentration during the preparation process generally limit its large-scale promotion. In the present work, an MXene dispersion with enhanced yield (90%), high concentration (45 mg/mL), and excellent dispersibility was successfully prepared. Subsequently, the active MXene nanosheets were effectively in situ deposition onto the silk fiber by means of dip-coating, relying on van der Waals forces and hydrogen bonds.

View Article and Find Full Text PDF

Ischaemia/reperfusion (I/R) injury is a common clinical condition that results in apoptosis and oxidative stress injury. Thyroid hormone was previously reported to elicit cardiac myocyte hypertrophy and promote cardiac function after cardiac injury. We used an in vivo mouse model of I/R injury and in vitro primary cardiomyocyte culture assays to investigate the effects of thyroid hormone on cardiomyocytes during hypoxia/reoxygenation (H/R) injury.

View Article and Find Full Text PDF

Aims: Severe cardiovascular diseases, such as myocardial infarction or heart failure, can alter thyroid hormone (TH) secretion and peripheral conversion, leading to low triiodothyronine (T3) syndrome. Accumulating evidence suggests that TH has protective properties against cardiovascular diseases and that treatment with TH can effectively reduce myocardial damage after myocardial infarction (MI). Our aim is to investigate the effect of T3 pretreatment on cardiac function and pathological changes in mice subjected to MI and the underlying mechanisms.

View Article and Find Full Text PDF

Bivalve mollusks are economically important invertebrates that exhibit marked diversity in benthic lifestyle and provide valuable resources for understanding the molecular basis of adaptation to benthic life. In this report, we present a high-quality, chromosome-anchored reference genome of the Venus clam, Cyclina sinensis. The chromosome-level genome was assembled by Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, 10× Genomics, and high-throughput chromosome conformation capture technologies.

View Article and Find Full Text PDF

Background And Purpose: Intracellular calcium concentration ([Ca2+]i) overload occurs in myocardial ischemia and -reperfusion. The augmentation of the late sodium current (INaL) causes intracellular Na+ accumulation and subsequent [Ca2+]i overload via the reverse mode of the Na+/Ca2+ exchange current (reverse-INCX), which can lead to arrhythmia and cardiac dysfunction. Thus, inhibition of INaL is a potential therapeutic approach for ischemic heart disease.

View Article and Find Full Text PDF

Oxidative stress plays an important role in the progression of cardiac diseases, including acute myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. Growing evidence indicates that thyroid hormone has protective properties against cardiovascular diseases. However, little is known about its effect on oxidative stress in cardiomyocytes or the underlying mechanisms.

View Article and Find Full Text PDF