Macropinocytosis mediates the non-selective bulk uptake of extracellular fluid, enabling cells to survey the environment and obtain nutrients. A conserved set of signaling proteins orchestrates the actin dynamics that lead to membrane ruffling and macropinosome formation across various eukaryotic organisms. At the center of this signaling network are Ras GTPases, whose activation potently stimulates macropinocytosis.
View Article and Find Full Text PDFMacropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated.
View Article and Find Full Text PDFRasG is a major regulator of macropinocytosis in . Its activity is under the control of an IQGAP-related protein, IqgC, which acts as a RasG-specific GAP (GTPase activating protein). IqgC colocalizes with the active Ras at the macropinosome membrane during its formation and for some time after the cup closure.
View Article and Find Full Text PDFThe actin-rich cortex plays a fundamental role in many cellular processes. Its architecture and molecular composition vary across cell types and physiological states. The full complement of actin assembly factors driving cortex formation and how their activities are spatiotemporally regulated remain to be fully elucidated.
View Article and Find Full Text PDFPolarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain-containing protein we named Leep1 as a novel polarity regulator.
View Article and Find Full Text PDFThe germination and polar growth of pollen are prerequisite for double fertilization in plants. The actin cytoskeleton and its binding proteins play pivotal roles in pollen germination and pollen tube growth. Two homologs of the actin-bundling protein fimbrin, AtFIM4 and AtFIM5, are highly expressed in pollen in Arabidopsis and can form distinct actin architectures in vitro, but how they co-operatively regulate pollen germination and pollen tube growth in vivo is largely unknown.
View Article and Find Full Text PDFIn this paper we demonstrate the coupling of nuclear migration to the base of Arabidopsis root hairs with programmed cell death (PCD). Nuclear migration and positioning are fundamental processes of eukaryotic cells. To date, no evidence for a direct connection between nucleus migration and PCD has been described in the literature.
View Article and Find Full Text PDF