Exosomes, as novel biomarker for liquid biopsy, exhibit huge important potential value for cancer diagnosis. However, various proteins show different expression levels on exosomal membrane, and the absolute concentration of exosomes in clinical samples is easily influenced by a number of factors. Here, we developed a CRISPR/Cas12a and aptamer-chemiluminescence based analysis (CACBA) for the relative abundance determination of tumor-related protein positive exosomes in plasma for breast cancer diagnosis.
View Article and Find Full Text PDFExosomes constitute an emerging biomarker for cancer diagnosis because they carry multiple proteins that reflect the origins of the parent cell. The highly sensitive detection of exosomes is a crucial prerequisite for the diagnosis of cancer. In this study, we report an exosome detection system based on quantum weak value amplification (WVA).
View Article and Find Full Text PDFPurpose: This study examined the underlying mechanisms of SJD's anti-inflammatory and analgesic effects on acute GA flares.
Methods: This study used pharmacology network and molecular docking methods. The active ingredients of ShuiJingDan (SJD) were obtained from the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP), and the relevant targets of GA were obtained from the Online Mendelian Inheritance in Man (OMIM) database and Therapeutic Target Database (TTD).
Introduction: This study was designed to investigate the effect of running exercise on improving bone health in aging mice and explore the role of the SIRT1 in regulating autophagy and osteogenic differentiation of Bone marrow Mesenchymal Stem Cells (BMSCs).
Methods: Twelve-month-old male C57BL/6J mice were used in this study as the aging model and were assigned to treadmill running exercise for eight weeks. Non-exercise male C57BL/6J mice of the same old were used as aging control and five-month-old mice were used as young controls.
Highly efficient and stimulus-responsive nanomedicines for cancer treatment are currently receiving tremendous attention. In this study, an acid-triggered charge-reversible graphene-based all-in-one nanocomplex is appropriately designed by surface modification with multilayer polymers and simultaneous co-transportation of photosensitizer indocyanine green (ICG) and oligonucleotide inhibitor of miR-21 (miR-21i) to achieve highly efficient genetic phototherapy in a controlled manner. The nanocomplex (denoted as GPCP/miR-21i/ICG) effectively protects miR-21i from degradation and exhibits excellent photothermal/photochemical reactive oxygen species (ROS) generation as well as fluorescence imaging ability.
View Article and Find Full Text PDFCurrently, photoimmunotherapy based on a theranostic nanoplatform emerges as a promising modality in advanced cancer therapy. In this study, a new type of versatile nanoassemblies (denoted as PC@GCpD(Gd)) was rationally designed by integrating the polydopamine stabilized graphene quantum dots (GQD)-photosensitizer nanocomposites (denoted as GCpD), immunostimulatory polycationic polymer/CpG oligodeoxynucleotide (CpG ODN) nanoparticles (denoted as PC) and Gd/Cy3 imaging probes for dual magnetic resonance/fluorescence imaging-guided photoimmunotherapy. PC@GCpD(Gd) effectively killed the tumor cells through the amplified photothermal and photodynamic effects mediated by GCpD, and contemporaneously delivered CpG ODN to the targeted endosomal Toll-like receptor 9 (TLR9) to continuously stimulate the secretion of proinflammatory cytokines and the maturation of dendritic cells, thereby resulting in the activation and infiltration of T lymphocytes.
View Article and Find Full Text PDFNanomedicine-based combination therapy has sparked a growing interest in clinical disease treatment and pharmaceutical industry. In this study, a mitochondria-targeted and near-infrared (NIR) light-activable multitasking nanographene (i.e.
View Article and Find Full Text PDFBiocompatible fluorescent polymeric nanoparticles (FPNs) are promising luminescent probes in cellular bioimaging, while the fabrication of high-quantum-yield FPN using nonconjugated heterochain polymers derived from step-growth polymerization is still in its infancy. Herein, the nonconjugated polyarylene ether nitrile (PEN) is endowed with aggregation-induced emission (AIE) feature by incorporation of an AIEgen named of 1,2-di(4-hydroxyphenyl)-1,2-diphenylethene into macromolecular backbone. Furthermore, the AIE-active PEN is crosslinked into water soluble fluorescent nanospheres showing good biocompatibility and strong emission ≈480 nm with a quantum yield of 21% in the presence of Ca , which allows the successful bioimaging of cancer cells.
View Article and Find Full Text PDFUnlabelled: Light-triggered nanotheranostics opens a fascinating but challenging avenue to achieve simultaneous and highly efficient anticancer outcomes for multimodal therapeutic and diagnostic modalities. Herein, a multifunctional phototheranostics based on a photosensitizer-assembled graphene/gold nanostar hybrid (GO/AuNS-PEG) was developed for cancer synergistic photodynamic (PDT) and photothermal therapy (PTT) as well as effective photothermal imaging. The stable and biocompatible GO/AuNS-PEG composite displayed a high photothermal conversion efficiency due to the enhanced optical absorbance of both graphene and gold nanostars in the near-infrared (NIR) range.
View Article and Find Full Text PDF