Context: Advanced copper and copper alloys, as significant engineering structural materials, have recently been extensively used in energy, electron, transportation, and aviation domains. Higher requirements urge the emergence of high-performance copper alloys. However, the traditional trial-and-error experimental observations and computational simulation research used to design and develop novel materials are time-consuming and costly.
View Article and Find Full Text PDFBackground: In preclinical studies, the positron emission tomography (PET) imaging with [C]UCB-A provided promising results for imaging synaptic vesicle protein 2A (SV2A) as a proxy for synaptic density. This paper reports the first-in-human [C]UCB-A PET study to characterise its kinetics in healthy subjects and further evaluate SV2A-specific binding.
Results: Twelve healthy subjects underwent 90-min baseline [C]UCB-A scans with PET/MRI, with two subjects participating in an additional blocking scan with the same scanning procedure after a single dose of levetiracetam (1500 mg).
Synaptic loss is a primary pathology in Alzheimer's disease and correlates best with cognitive impairment as found in studies. Previously, we observed reductions of synaptic density with [C]UCB-J PET (radiotracer for synaptic vesicle protein 2A) throughout the neocortex and medial temporal brain regions in early Alzheimer's disease. In this study, we applied independent component analysis to synaptic vesicle protein 2A-PET data to identify brain networks associated with cognitive deficits in Alzheimer's disease in a blinded data-driven manner.
View Article and Find Full Text PDFResting-state network (RSN) connectivity is a widely used measure of the brain's functional organization in health and disease; however, little is known regarding the underlying neurophysiology of RSNs. The aim of the current study was to investigate associations between RSN connectivity and synaptic density assessed using the synaptic vesicle glycoprotein 2A radioligand C-UCB-J PET. Independent component analyses (ICA) were performed on resting-state fMRI and PET data from 34 healthy adult participants (16F, mean age: 46 ± 15 years) to identify RSNs of interest (default-mode, right frontoparietal executive-control, salience, and sensorimotor networks) and select sources of C-UCB-J variability (medial prefrontal, striatal, and medial parietal).
View Article and Find Full Text PDFMicroglia-mediated synaptic loss contributes to the development of cognitive impairments in Alzheimer's disease (AD). However, the basis for this immune-mediated attack on synapses remains to be elucidated. Treatment with the metabotropic glutamate receptor 5 (mGluR5) silent allosteric modulator (SAM), BMS-984923, prevents β-amyloid oligomer-induced aberrant synaptic signaling while preserving physiological glutamate response.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2022
As a new van der Waals ferromagnetic material, VI can be used to lift the valley degeneracy of transition metal dichalcogenides at the ' and points. Here, the electronic structure and magnetic anisotropy of the VI/MSe (M = W, Mo) heterostructures are studied. The VI/WSe heterostructure is semiconducting with a band gap of 0.
View Article and Find Full Text PDFBackground: Transferrin receptor (TfR1) mediated enhanced brain delivery of antibodies have been studied extensively in preclinical settings. However, the brain pharmacokinetics, i.e.
View Article and Find Full Text PDFBackground: The human brain is inherently organized into distinct networks, as reported widely by resting-state functional magnetic resonance imaging (rs-fMRI), which are based on blood-oxygen-level-dependent (BOLD) signal fluctuations. C-UCB-J PET maps synaptic density via synaptic vesicle protein 2A, which is a more direct structural measure underlying brain networks than BOLD rs-fMRI.
Methods: The aim of this study was to identify maximally independent brain source networks, i.
Purpose: Synapse loss is a hallmark of Alzheimer's disease (AD) and correlates with cognitive decline. The validation of a noninvasive in vivo imaging approach to quantify synapse would greatly facilitate our understanding of AD pathogenesis and assist drug developments for AD. As animal models of neurodegenerative and neuropsychiatric disorders play a critical role in the drug discovery and development process, a robust, objective, and translational method for quantifying therapeutic drug efficacy in animal models will facilitate the drug development process.
View Article and Find Full Text PDFACS Chem Neurosci
December 2020
Antibodies are attractive as radioligands due to their outstanding specificity and high affinity, but their inability to cross the blood-brain barrier (BBB) limits their use for CNS targets. To enhance brain distribution, amyloid-β (Aβ) antibodies were fused to a transferrin receptor (TfR) antibody fragment, enabling receptor mediated transport across the BBB. The aim of this study was to label these bispecific antibodies with fluorine-18 and use them for Aβ PET imaging.
View Article and Find Full Text PDFMeasurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side channels and it is practical with current technology. Previous implementations of MDI-QKD all used two symmetric channels with similar losses. However, the secret key rate is severely limited when different channels have different losses.
View Article and Find Full Text PDFPET imaging of amyloid-beta (Aβ) deposits in brain has become an important aid in Alzheimer's disease diagnosis, and an inclusion criterion for patient enrolment into clinical trials of new anti-Aβ treatments. Available PET radioligands visualizing Aβ bind to insoluble fibrils, i.e.
View Article and Find Full Text PDFVisualization of amyloid-β (Aβ) pathology with PET has become an important tool for making a specific clinical diagnosis of Alzheimer disease (AD). However, the available amyloid PET radioligands, such as C-Pittsburgh compound B, reflect levels of insoluble Aβ plaques but do not capture soluble and protofibrillar Aβ forms. Furthermore, the plaque load appears to be fairly static during clinical stages of AD and may not be affected by Aβ-reducing treatments.
View Article and Find Full Text PDFPurpose: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-beta (Aβ) deposition, hyperphosphorylation of tau, and neuroinflammation. Astrocytes, the most abundant glial cell type in the nervous system, respond to neurodegenerative disorders through astrogliosis, i.e.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) have not been used as positron emission tomography (PET) ligands for in vivo imaging of the brain because of their limited passage across the blood-brain barrier (BBB). However, due to their high affinity and specificity, mAbs may be an attractive option for brain PET if their brain distribution can be facilitated. In the present study, a F(ab') fragment of the amyloid-beta (Aβ) protofibril selective mAb158 was chemically conjugated to the transferrin receptor (TfR) antibody 8D3 to enable TfR mediated transcytosis across the BBB.
View Article and Find Full Text PDFBackground: Immunotherapy is a very fast expanding field within drug discovery and, hence, rapid and inexpensive expression of antibodies would be extremely valuable. Antibodies are, however, difficult to express. Multifunctional antibodies with additional binding domains further complicate the expression.
View Article and Find Full Text PDFAntibodies are highly specific for their target molecules, but their poor brain penetrance has restricted their use as PET ligands for imaging of targets within the CNS. The aim of this study was to develop an antibody-based radioligand, using the Tribody format, for PET imaging of soluble amyloid-beta (Aβ) protofibrils, which are suggested to cause neurodegeneration in Alzheimer's disease. Antibodies, even when expressed in smaller engineered formats, are large molecules that do not enter the brain in sufficient amounts for imaging purposes.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to Aβ protofibrils, which are involved in the pathogenesis of Alzheimer's disease (AD).
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by aggregation of amyloid beta (Aβ) into insoluble plaques. Intermediates, Aβ oligomers (Aβo), appear to be the mechanistic cause of disease. The de facto PET AD ligand, [C]PIB, binds and visualizes Aβ plaque load, which does not correlate well with disease severity.
View Article and Find Full Text PDFOwing to their specificity and high-affinity binding, monoclonal antibodies have potential as positron emission tomography (PET) radioligands and are currently used to image various targets in peripheral organs. However, in the central nervous system, antibody uptake is limited by the blood-brain barrier (BBB). Here we present a PET ligand to be used for diagnosis and evaluation of treatment effects in Alzheimer's disease.
View Article and Find Full Text PDFA tin oxide multi-tube array (SMTA) with a parallel effect was fabricated through a simple and promising method combining chemosynthesis and biomimetic techniques; a biomimetic template was derived from the bristles on the wings of the Alpine Black Swallowtail butterfly (Papilio maackii). SnO2 tubes are hollow and porous structures with micro-pores regularly distributed on the wall. The morphology, the delicate microstructure and the crystal structure of this SMTA were characterized by super resolution digital microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction.
View Article and Find Full Text PDFButterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength.
View Article and Find Full Text PDFMultilayer structures are known to produce vivid iridescent colouration in many butterflies. Morpho butterflies are well known for their high reflectance, which appears to remain high over a wide range of viewing angles. Thus these butterflies have served as the inspiration for sensing materials.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2014
In this work, PEO-α-CD pseudorotaxane hydrogels were prepared. The gels were loaded with proteins, BSA and lysozyme, representing proteins with different molecular weights. The kinetics of protein release was studied.
View Article and Find Full Text PDFNutritional intervention may retard the development of Alzheimer's disease (AD). In this study we tested the effects of 2 multi-nutrient diets in an AD mouse model (APPswe/PS1dE9). One diet contained membrane precursors such as omega-3 fatty acids and uridine monophosphate (DEU), whereas another diet contained cofactors for membrane synthesis as well (Fortasyn); the diets were developed to enhance synaptic membranes synthesis, and contain components that may improve vascular health.
View Article and Find Full Text PDF