Appl Physiol Nutr Metab
December 2024
Controlled Nutritional Status (CONUT) scores have been developed as quantitative tools that can be employed to gauge the nutritional status of individual patients. However, there has been very little research investigating the association between these CONUT scores and the function of the thyroid. As such, the present study was designed to address this research gap through the evaluation of a representative cohort of American adults.
View Article and Find Full Text PDFSolar-driven interfacial evaporation is a very promising choice for producing clean water. Despite the considerable investigation of pure NaCl brine purification, solar-driven complex water purification, such as real-world seawater desalination as well as domestic and industrial wastewater treatment, has rarely been investigated, mainly due to its compositions being much more complicated than NaCl brine. Herein, we developed a graphene oxide/aramid nanofiber (GO/ANFs) aerogel by a freeze-drying process.
View Article and Find Full Text PDFObjective: Composite Dietary Antioxidant Index (CDAI) values serve as a summary of an individual's combined dietary antioxidant intake. Although specific antioxidants are known to reduce thyroid damage from oxidative stress, the relationship between the CDAI and thyroid function remains uncertain. The purpose of this study was thus to investigate this relationship in greater detail while focusing on a representative American adult population.
View Article and Find Full Text PDFMean corpuscular volume (MCV) is an important indicator used to determine the etiology of anemia and is associated with a variety of diseases. However, the link between thyroid function and MCV has yet to be clarified. This study was thus developed to assess relationships between thyroid function and MCV in a population of adults in the US.
View Article and Find Full Text PDFAdhesive hydrogels are considered to be promising interfacial adhesive materials for various applications; however, their adhesive strength is significantly reduced when immersed in liquid environments (water and oil) due to obstruction of the liquid layer or swelling in liquid, and they could not always be reused when the failure of the adhesive performance occurred. Herein, a graphite oxide/poly(vinyl alcohol) (GO/PVA) hydrogel with strong adhesion in air and under liquid environments was developed by rationally regulating the interactions of water and dimethyl sulfoxide (DMSO) in the binary liquid system. The strong interaction between water and DMSO allowed the water layer of the GO/PVA hydrogel on the hydrogel surface to act as a shield to repel oil in air, under water, and even when immersed in oil, and it also endowed the obtained hydrogel with antiswelling property when immersed in water and oil.
View Article and Find Full Text PDFBackground: Vesicle-mediated transport, vital for substance exchange and intercellular communication, is linked to tumor initiation and progression. This work was designed to study the role of vesicle-mediated transport-related genes (VMTRGs) in breast cancer (BC)prognosis.
Methods: Univariate Cox analysis was utilized to screen prognosis-related VMTRGs.
Conductive hydrogels have gained increasing attention in the field of wearable smart devices. However, it remains a big challenge to develop a multifunctionally conductive hydrogel in a rapid and facile way. Herein, a conductive tannic acid-iron/poly (acrylic acid) hydrogel was synthesized within 30 s at ambient temperature by the tannic acid-iron (TA@Fe)-mediated dynamic catalytic system.
View Article and Find Full Text PDFSolar-powered water purification is one of the promising choices for clean water production. However, it remains challenging to develop aerogel solar evaporators that simultaneously possess enhanced light-to-heat conversion, optimal thermal management, and salt crystal deposition inhibition. Herein, to address this challenge, we have developed a 3D chitosan-reduced graphene oxide/polypyrrole (CS-RGO/PPy) aerogel vaporizer with a vertical and radially aligned structure through a directional freezing process, inspired by the featured structure of conifers.
View Article and Find Full Text PDFChiral heterocycles with two or more carbon stereocenters are quite important skeletons in many fields. However, powerful strategies for the construction of such synthetically valuable heterocycles, especially with two or more remote carbon stereocenters, have largely lagged behind. We report here a powerful method for the synthesis of chiral γ-butyrolactones with two non-vicinal carbon stereocenters from readily available chemical feedstocks under mild conditions.
View Article and Find Full Text PDFBreast cancer is a malignancy harmful to physical and mental health in women, with quite high mortality. Copy number variations (CNVs) are vital factors affecting the progression of breast cancer. Detecting CNVs in breast cancer to predict the prognosis of patients has become a promising approach to accurate treatment in recent years.
View Article and Find Full Text PDFChiral lactones are found in many natural products. The reaction of simple alkenes with iodoacetic acid is a powerful method to build lactones, but the enantioselective version of this reaction has not been implemented to date. Herein, we report the efficient catalytic radical enantioselective carbo-esterification of styrenes enabled by a newly developed Cu -perfluoroalkylated PyBox system.
View Article and Find Full Text PDFEngineering a versatile platform that enables to separate both oil/water and oil/oil mixtures and remove dye from water is not easy. To address this challenge, we have developed an Ag/polydopamine-coated textile (Ag/PDA@textile) by chemically depositing Ag particles on the textile surface using polydopamine as the binder layer. The obtained Ag/PDA@textile attracts water but repels oil in the air, underwater, and when immersed into the oil.
View Article and Find Full Text PDFEnviron Monit Assess
April 2022
With the rapid development of China's social economy, the phenomenon of unbalanced regional economic development is increasingly obvious. The shortage of water resources in northwest China is an important constraint to local development. The study on the water resources carrying capacity of the Zhuanglang River Basin plays an important role in the development of local economy; thus, we evaluate the water resources situation of Zhuanglang River Basin by using hydrology-related calculation method, combining with field investigation, visiting relevant departments, and referring to relevant data.
View Article and Find Full Text PDFCancer Cell Int
February 2022
Background: To understand the effect of DNMT1-mediated MEG3 promoter methylation on breast cancer progression.
Methods: Expression of DNMT1, MEG3 and miR-494-3p was assayed by qRT-PCR and western blot. Methylation-specific PCR was used to examine MEG3 promoter methylation level.
The straightforward strategy of building a chiral C-O bond directly on a general carbon radical center is challenging and stereocontrol of the reactions of open-chain hydrocarbon radicals remains a largely unsolved problem. Advance in this elementary step will spur the development of asymmetric radical C-O bond construction. Herein, we report a copper-catalyzed regioselective and enantioselective carboesterification of substituted dienes using alkyl diacyl peroxides as the source of both the carbon and oxygen substituents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
Development of a robust self-cleaning oil-repellent surface in a cost-efficient and green manner is highly desirable, yet still difficult to realize. Herein, we develop a poly(vinyl alcohol) (denoted as PVA) composite hydrogel on which the oily contaminations can be removed efficiently by water merely. Owing to its high affinity to water and resistance to oils, the water-wetted hydrogel establishes a slippery oil-repellent state in air, displays underwater superoleophobicity with ultralow adhesion to all probe oils, and blocks oil from permeating when immersed into an oil surrounding.
View Article and Find Full Text PDFChiral allenes are important structural motifs frequently found in natural products, pharmaceuticals, and other organic compounds. Asymmetric 1,4-difunctionalization of 1,3-enynes is a promising strategy to construct axial chirality and produce substituted chiral allenes from achiral substrates. However, the previous state of the art in 1,4-difunctionalization of 1,3-enynes focused on the allenyl anion pathway.
View Article and Find Full Text PDFWe demonstrate and optimize a tri-layer vertical coupler for a silicon nitride (SiN) multilayer platform operating at a 2 µm band. The large spacing between the topmost and bottommost layers of a gradient structure enables ultra-low crossing loss and interlayer crosstalk without affecting the efficiency interlayer transition. We achieve a 0.
View Article and Find Full Text PDFHydrophilic materials are easily fouled by organic contaminants owing to their high surface energy, and this oil-fouling problem severely hinders their use in practical applications. To address this challenge, herein, a hydrophilic coating with oil repellency and photocatalytic activity is developed by a spray-casting process. In the air surrounding, a water droplet spreads over the coating surface completely, while oil droplets exhibit contact angles more than 150° and moving on the coating freely.
View Article and Find Full Text PDFOrganofluorine compounds have shown their great value in many aspects. Moreover, allenes are also a class of important compounds. Fluorinated or fluoroalkylated allenes might provide an option as candidates for drug and material developments, as allenes allow a great number of valuable transformations.
View Article and Find Full Text PDFA Cu-catalyzed synthesis of a range of value-added 1,1-diarylalkanes by radical alkylarylation of vinylarenes with alkyl peroxides as masked alkyl electrophiles is reported. The reaction features broad substrate scope, good functional group tolerance, and mild reaction conditions. Various bioactive molecules and key pharmaceutical intermediates have been easily synthesized by this method, demonstrating its synthetic value.
View Article and Find Full Text PDFClassical 1,4-dicarbofunctionalization of 1,3-enynes employs organometallic reagents as nucleophiles to initiate the reaction. We report a copper-catalyzed 1,4-alkylarylation of 1,3-enynes with alkyl diacyl peroxides as masked alkyl electrophiles and aryl boronic acids as nucleophiles, selectively affording structurally diversified tetrasubstituted allenes under mild conditions. Mechanistic studies suggest that an allenyl radical might be involved.
View Article and Find Full Text PDFMany reactions involving allenyl ion species have been studied, but reactions involving allenyl radicals are less well understood, perhaps because of the inconvenience associated with the generation of short-lived allenyl radicals. We describe here a versatile method for the generation of allenyl radicals and their previously unreported applications in the intermolecular 1,4-carbocyanation and 1,4-sulfimidocyanation of 1,3-enynes. With the assistance of the trifunctional reagents, alkyl diacyl peroxides or N-fluorobenzenesulfonimide, a range of synthetically challenging multisubstituted allenes can be prepared with high regioselectivity.
View Article and Find Full Text PDFHypothesis: Development of an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding by a simple method is highly desirable, yet it remains a challenge that current technologies have been unable to fully address.
Experiments: Herein, the original fabric is immersed into the solution containing ZnO nanoparticle and PDMS (polydimethylsiloxane), and the fiber surfaces are uniformly covered by a ZnO-PDMS layer after thermal treatment at 110 °C for 30 min.
Findings: Droplets of water and corrosive liquids including strong acid, strong alkali, and saturated salt solution display sphere shape on the ZnO-PDMS coated fabric surface.
Nanomaterials (Basel)
February 2018
The three-dimensional (3D) SnS decorated carbon nano-networks (SnS@C) were synthesized via a facile two-step method of freeze-drying combined with post-heat treatment. The lithium and sodium storage performances of above composites acting as anode materials were investigated. As anode materials for lithium ion batteries, a high reversible capacity of 780 mAh·g for SnS@C composites can be obtained at 100 mA·g after 100 cycles.
View Article and Find Full Text PDF