Publications by authors named "Xiaosong Gan"

The coupling between solid-state quantum emitters and nanoplasmonic waveguides is essential for the realization of integrated circuits for various quantum information processing protocols, communication, and sensing. Such applications benefit from a feasible, scalable and low loss fabrication method as well as efficient coupling to nanoscale waveguides. Here, we demonstrate optomagnetic plasmonic nanocircuitry for guiding, routing and processing the readout of electron spins of nitrogen vacancy centres.

View Article and Find Full Text PDF

The development of ultrathin flat lenses has revolutionized the lens technologies and holds great promise for miniaturizing the conventional lens system in integrated photonic applications. In certain applications, the lenses are required to operate in harsh and/or extreme environments, for example aerospace, chemical, and biological environments. Under such circumstances, it is critical that the ultrathin flat lenses can be resilient and preserve their outstanding performance.

View Article and Find Full Text PDF

Due to their exceptional optical and magnetic properties, negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) have been identified as an indispensable tool for imaging, sensing and quantum bit manipulation. The investigation of the emission behaviors of single NV centers at the nanoscale is of paramount importance and underpins their use in applications ranging from quantum computation to super-resolution imaging. Here, we report on a spin-manipulated nanoscopy method for nanoscale resolutions of the collectively blinking NV centers confined within the diffraction-limited region.

View Article and Find Full Text PDF

We present a detailed analysis of nanoparticle trapping using plasmonic nanostructures, which predicts an improvement of two orders of magnitude in trapping force obtained by optimizing the plasmon resonance of the nanostructures. As the result, a total of four orders of magnitude enhancement in trapping force can be achieved comparing to the case without the nanostructures. In addition, it is illustrated that tuning the resonance wavelength is achievable by varying the diameter and/or the height of the nanorods.

View Article and Find Full Text PDF

We demonstrate a three dimensional nanoparticle trapping approach aided by the surface plasmon resonance of metallic nanostructures. The localized surface plasmon resonance effect provides strong electromagnetic field enhancement, which enables confinement of nanoparticles in the three-dimensional space. Numerical simulations indicate that the plasmonic structure provides approximately two orders of magnitude stronger optical forces for trapping nanoparticles, compared with that without nanostructures.

View Article and Find Full Text PDF

In this paper, we present the modulation of a tightly focused evanescent field by a nano-plasmonic waveguide, which consists of two silver nanorods lying on the interface of two dielectric media. Linearly polarized and radially polarized illuminating beams are investigated under the influence of localized surface plasmons effect. It is demonstrated that different polarization components of the tightly focused evanescent field can be modulated accordingly.

View Article and Find Full Text PDF

Near-field rotation of a trapped particle under focused evanescent Laguerre-Gaussian beam illumination is theoretically investigated by mapping the two-dimensional transverse trapping efficiency exerting on the particle. It is revealed that the severe focal field deformation associated with a focused evanescent Laguerre-Gaussian beam causes a significant impact on the transverse trapping performance of the microparticle. Compared with the far-field trapping force, strong tangential force components have been observed in the transverse efficiency mapping, which potentially lead to rotational motions to the particle within a small trapping volume in the optical near-field.

View Article and Find Full Text PDF

We present a novel technique for producing a doughnut laser beam by use of a liquid-crystal cell. It is demonstrated that the liquid-crystal cell exhibits an efficiency in energy conversion near 100%. One of the main advantages of this method is its capability of dynamic switching between a Gaussian mode and a doughnut mode of different topological charges.

View Article and Find Full Text PDF

To understand the fundamental mechanical and viscoelastic properties of RBCs, one needs laser tweezers in which cells can not only be trapped, but also be stretched, folded, and rotated. Stretching, folding and rotating an RBC is particularly important in order to reveal the shear elasticity of the RBC membrane. Here we show a single beam near-field laser trapping technique under focused evanescent wave illumination for optical stretching, folding and rotation of a single RBC.

View Article and Find Full Text PDF

In this comment, problems associated with an oversimplified FDTD based model used for trapping force calculation in recent papers "Computation of the optical trapping force using an FDTD based technique" [Opt. Express 13, 3707 (2005)], and "Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping" [Opt. Express 12, 2220 (2004)] are discussed.

View Article and Find Full Text PDF

We report on the experimental investigation into the characterization of two-photon fluorescence microscopy based on the separation distance of a single-mode optical fiber coupler and a gradient-index (GRIN) rod lens. The collected two-photon fluorescence signal exhibits a maximum intensity at a defined separation distance (gap length) where the increasing effective excitation numerical aperture is balanced by the decreasing confocal emission collection. A maximum signal is found at gap lengths of approximately 2, 1.

View Article and Find Full Text PDF

We demonstrate theoretically and experimentally an anomaly in the intensity distribution at the focal region of a Laguerre-Gaussian beam, when such a beam is focused by a high numerical aperture objective lens through an index-mismatched interface satisfying the total internal reflection condition. An asymmetric rotation of the focal field arising from the interplay of the phase shift induced by the total internal reflection and the helical phase of the Laguerre-Gaussian beam has been experimentally observed by a scanning near-field optical microscope. A cross-section analysis shows that the experimental results match well with the theoretical predictions.

View Article and Find Full Text PDF

In this paper, a tightly focused evanescent field produced by a total internal reflection objective lens under the illumination of a radially polarized beam generated using a single liquid crystal phase modulator is investigated. The field distributions have been directly mapped by a scanning near-field optical microscope. It is demonstrated both theoretically and experimentally that the introduction of radially polarized beam illumination combining with an annular beam illumination exhibits advantages in two aspects.

View Article and Find Full Text PDF

We report on a nonlinear optical microscope that adopts double-clad photonic crystal fibers for single-mode illumination delivery and multimode signal collection. It is demonstrated that two-photon fluorescence and second harmonic generation signals can be simultaneously collected in such a microscope with axial resolution of 2.8 microm and 2.

View Article and Find Full Text PDF

We present a compact second-harmonic-generation (SHG) microscope based on a three-port single-mode fiber coupler. The fiber coupler is used to deliver a near-infrared ultrashort-pulsed laser beam as well as to collect the SHG signal in the visible wavelength range. The SHG microscope exhibits an axial resolution of 1.

View Article and Find Full Text PDF

The inadequacy of the optical trapping model based on ray optics in the case of describing the optical trapping performance of annular and doughnut laser beams is discussed. The inadequacy originates from neglecting the complex focused field distributions of such beams, such as polarization and phase, and thus leads to erroneous predictions of trapping force. Instead, the optical trapping model based on the vectorial diffraction theory, which considers the exact field distributions of a beam in the focal region, needs to be employed for the determination of the trapping force exerted on small particles.

View Article and Find Full Text PDF

A physical model is presented to understand and calculate trapping force exerted on a dielectric micro-particle under focused evanescent wave illumination. This model is based on our recent vectorial diffraction model by a high numerical aperture objective operating under the total internal condition. As a result, trapping force in a focused evanescent spot generated by both plane wave (TEM00) and doughnut beam (TEM*01) illumination is calculated, showing an agreement with the measured results.

View Article and Find Full Text PDF

In this letter we present a physical model, both theoretically and experimentally, which describes the mechanism for the conversion of evanescent photons into propagating photons detectable by an imaging system. The conversion mechanism consists of two physical processes, near-field Mie scattering enhanced by morphology dependant resonance and vectorial diffraction. For dielectric probe particles, these two processes lead to the formation of an interference-like pattern in the far-field of a collecting objective.

View Article and Find Full Text PDF

We report on the measurement of morphology-dependent resonance within a laser-trapped micro-sphere excited under two-photon absorption. Both trapping and two-photon excitation are simultaneously achieved by a single femtosecond pulsed laser beam. The effect of the laser power as well as the pulse width on the transverse trapping force is first investigated.

View Article and Find Full Text PDF

There has been an interest to understand the trapping performance produced by a laser beam with a complex wavefront structure because the current methods for calculating trapping force ignore the effect of diffraction by a vectorial electromagnetic wave. In this letter, we present a method for determining radiation trapping force on a micro-particle, based on the vectorial diffraction theory and the Maxwell stress tensor approach. This exact method enables one to deal with not only complex apodization, phase, and polarization structures of trapping laser beams but also the effect of spherical aberration present in the trapping system.

View Article and Find Full Text PDF

An effective Mie-scattering model is developed to deal with the scattering property of a spherical fractal aggregate consisting of scattering particles. In this model the scattered field of a scattering particle is given by the classical Mie-scattering theory. On the basis of the Monte Carlo simulation method, we determine the physical parameters of a scattering aggregate, the scattering efficiency Q, and the anisotropy value g, as well as their dependence on the size and the effective mean-free-path length of a scattering aggregate.

View Article and Find Full Text PDF

We combine a Monte Carlo technique with Mie theory to develop a method for simulating optical coherence tomography (OCT) imaging through homogeneous turbid media. In our model the propagating light is represented by a plane wavelet; its line propagation direction and path length in the turbid medium are determined by the Monte Carlo technique, and the process of scattering by small particles is computed according to Mie theory. Incorporated into the model is the numerical phase function obtained with Mie theory.

View Article and Find Full Text PDF

We report on, in this letter, a phenomenon that the central zerointensity point of a doughnut beam, caused by phase singularity, disappears in the focus, when such a beam is focused by a high numerical-aperture objective in free space. In addition, the focal shape of the doughnut beam of a given topological charge exhibits the increased ring intensity in the direction orthogonal to the incident polarization state and an elongation in the polarization direction. These phenomena are caused by the effect of depolarization, associated with a high numerical-aperture objective, and become pronounced by the use of a central obstruction in the objective aperture.

View Article and Find Full Text PDF

Image resolution and signal level in fluorescence microscopy through inhomogeneous turbid media consisting of scatterers of multiple sizes under single- (1p), two- (2p), and three-photon (3p) excitation have been investigated based on a modified Monte Carlo model. The effects of the size distribution and the concentration distribution of scattering particles are explored. Simulation results reveal that the size and the concentration distribution both have an impact on image formation in media consisting of small particles and that 3p excitation has the most significant impact.

View Article and Find Full Text PDF

In this paper, image enhancement and reconstruction through a turbid medium by utilizing polarization gating and mathematical image reconstruction methods in a microscopic imaging system are investigated. A Monte Carlo simulation model based on Mie theory and the concept of the effective point spread function (EPSF) is adopted to study image formation under a transmission-mode microscope. The results show that polarization gating methods, and particularly the differential polarization gating method, can be efficient in suppressing highly scattered light, which leads to a significant enhancement of image quality.

View Article and Find Full Text PDF