Publications by authors named "Xiaoshuang Zuo"

Background: Spinal cord swelling commonly occurs following SCI. Previous studies suggest that PBM may reduce inflammation and scar formation after SCI. However, whether PBM can alleviate post-spinal cord injury edema and its underlying mechanisms have not yet been reported.

View Article and Find Full Text PDF
Article Synopsis
  • The tumor microenvironment (TME) significantly affects the success of treatments for hepatocellular carcinoma (HCC), specifically highlighting the role of tumor-associated endothelial cells (TECs) that influence tumor development and treatment response.
  • A study using multi-omics profiling investigated different TEC subpopulations in HCC, uncovering a new subset, CXCL12 TECs, that suppresses immune responses by preventing T cell activation and attracting immune-suppressive cells.
  • Targeting CXCL12 TECs with a bispecific antibody aimed at both CXCL12 and PD1 shows potential to enhance anti-tumor immune responses, representing a promising strategy to improve HCC immunotherapy outcomes.
View Article and Find Full Text PDF

Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process.

View Article and Find Full Text PDF

Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment. The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair. These proteins are thus candidate targets for spinal cord injury therapy.

View Article and Find Full Text PDF

Background: Many studies have recently highlighted the role of photobiomodulation (PBM) in neuropathic pain (NP) relief after spinal cord injury (SCI), suggesting that it may be an effective way to relieve NP after SCI. However, the underlying mechanisms remain unclear. This study aimed to determine the potential mechanisms of PBM in NP relief after SCI.

View Article and Find Full Text PDF

Osteosarcoma (OS), the primary malignant bone tumor, has a low survival rate for recurrent patients. Latest reports indicated that cancer-associated fibroblasts (CAFs) were the main component of tumor microenvironment, and would generate a variable role in the progression of tumors. However, the role of CAFs is still few known in osteosarcoma.

View Article and Find Full Text PDF

Mitochondrial transplantation is a promising treatment for spinal cord injury (SCI), but it has the disadvantage of low efficiency of mitochondrial transfer to targeted cells. Here, we demonstrated that Photobiomodulation (PBM) could promote the transfer process, thus augmenting the therapeutic effect of mitochondrial transplantation. In vivo experiments, motor function recovery, tissue repair, and neuronal apoptosis were evaluated in different treatment groups.

View Article and Find Full Text PDF

Increasing evidence indicates that mitochondrial fission imbalance plays an important role in delayed neuronal cell death. Our previous study found that photobiomodulation improved the motor function of rats with spinal cord injury. However, the precise mechanism remains unclear.

View Article and Find Full Text PDF

To explore the relationship between diabetes and intervertebral disc degeneration in mice and the associated underlying mechanism. Four-week-old male Kunming mice were used to model diabetes using a high-fat diet combined with streptozotocin injection. After 6 months, morphological and pathological changes in L4-L6 intervertebral discs were detected by magnetic resonance imaging, micro-CT and histological staining.

View Article and Find Full Text PDF
Article Synopsis
  • Photobiomodulation (PBM), or low-level laser therapy, is a noninvasive treatment that aids in reducing inflammation and promoting tissue repair, particularly for spinal cord injuries.
  • In a recent study, researchers investigated how PBM influences macrophage polarization and identified that it inhibits STAT3 expression by increasing the levels of miR-330-5p, indicating a key gene regulatory mechanism.
  • The findings suggest that targeting STAT3 and its relationship with miR-330-5p could enhance the therapeutic effects of photobiomodulation in improving motor function recovery in spinal cord injury models.
View Article and Find Full Text PDF

Background: Secondary spinal cord injury (SCI) often causes the aggravation of inflammatory reaction and nerve injury, which affects the recovery of motor function. Bone-marrow-derived macrophages (BMDMs) were recruited to the injured area after SCI, and the M1 polarization is the key process for inducing inflammatory response and neuronal apoptosis. We previously showed that photobiomodulation (PBM) can inhibit the polarization of M1 phenotype of BMDMs and reduce inflammation, but the underlying mechanisms are unclear.

View Article and Find Full Text PDF

Photobiomodulation (PBM) has been repeatedly reported to play a major role in the regulation of osteoblast proliferation and mineralization. Autophagy is closely associated with various pathophysiological processes in osteoblasts, while its role in oxidative stress is even more critical. However, there is still no clear understanding of the mechanism of the role of autophagy in the regulation of osteoblast mineralization and apoptosis under oxidative stress by PBM.

View Article and Find Full Text PDF

Insufficient neuronal mitochondrial bioenergetics supply occurs after spinal cord injury (SCI), leading to neuronal apoptosis and impaired motor function. Previous reports have shown that photobiomodulation (PBM) could reduce neuronal apoptosis and promote functional recovery, but the underlying mechanism remains unclear. Therefore, we aimed to investigate whether PBM improved prognosis by promoting neuronal mitochondrial bioenergetics after SCI.

View Article and Find Full Text PDF

The study aimed to design a reliable and straightforward PBM method by implanting a medical scattering fiber above surgically exposed spinal cord in SCI patients. Moreover, the safety of this method was examined. Twelve patients with acute SCI (ASIA B) requiring posterior decompression were recruited.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a catastrophic disease with a complex pathogenesis that includes inflammation, oxidative stress, and glial scar formation. Macrophages are the main mediators of the inflammatory response and are distributed in the epicentre of the SCI. Macrophages have neurotoxic and neuroprotective phenotypes (also known as classically and alternatively activated macrophages or M1 and M2 macrophages) that are associated with pro- or anti- inflammatory gene expression.

View Article and Find Full Text PDF

After spinal cord injury (SCI), reactive astrocytes can be classified into two distinctive phenotypes according to their different functions: neurotoxic (A1) astrocytes and neuroprotective (A2) astrocytes. Our previous studies proved that photobiomodulation (PBM) can promote motor function recovery and improve tissue repair after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM contributes to repair after SCI by regulating the activation of astrocytes.

View Article and Find Full Text PDF

Background: Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI.

View Article and Find Full Text PDF

To study the effect of photobiomodulation (PBM) on axon regeneration and secretion change of dorsal root ganglion (DRG) under oxidative stress after spinal cord injury (SCI), and further explore the effect of changes in DRG secretion caused by PBM on the polarization of macrophages. The PBM-DRG model was constructed to perform PBM on neurons under oxidative stress simulated in vitro. And the irradiation conditions were as follows: wavelength, 810 nm; power density, 2 mW/cm; irradiation area, 4.

View Article and Find Full Text PDF

Experts have proven that photobiological regulation therapy for spinal cord injury promotes the spinal repair following injury. The traditional irradiation therapy mode is indirect (percutaneous irradiation), which could significantly lower the effective use of light energy. In earlier studies, we developed an implantable optical fiber that one can embed above the spinal cord lamina, and the light directly is cast onto the surface of the spinal cord in a way that can dramatically improve energy use.

View Article and Find Full Text PDF

In spinal cord injury (SCI), inflammation is a major mediator of damage and loss of function and is regulated primarily by the bone marrow-derived macrophages (BMDMs). Photobiomodulation (PBM) or low-level light stimulation is known to have anti-inflammatory effects and has previously been used in the treatment of SCI, although its precise cellular mechanisms remain unclear. In the present study, the effect of PBM at 810 nm on classically activated BMDMs was evaluated to investigate the mechanisms underlying its anti-inflammatory effects.

View Article and Find Full Text PDF

Previous studies on spinal cord injury (SCI) have confirmed that percutaneous photobiomodulation (PBM) therapy can ameliorate immunoinflammatory responses at sites of injury, accelerate nerve regeneration, suppress glial scar formation and promote the subsequent recovery of locomotor function. The current study was performed to evaluate a large-animal model employing implanted optical fibers to accurately irradiate targeted spinal segments. The method's feasibility and irradiation parameters that do not cause phototoxic reaction were determined, and the methodology of irradiating the spinal cord with near-infrared light was investigated in detail.

View Article and Find Full Text PDF