Int J Environ Res Public Health
June 2022
The rapid pace of innovations and the frequency of replacement of electrical and electronic equipment has made waste printed circuit boards (WPCB) one of the fastest growing waste streams. The frequency of replacement of equipment can be caused by a limited time of proper functioning and increasing malfunctions. Resource utilization of WPCBs have become some of the most profitable companies in the recycling industry.
View Article and Find Full Text PDFIn the present work, a novel mixed matrix cation exchange membrane composed of sulfonated polyether sulfone (SPES), N-phthaloyl chitosan (NPHCs) and MIL-101(Fe) was synthesized using response surface methodology (RSM). The electrochemical and physical properties of the membrane, such as ion exchange capacity, water content, morphology, contact angle, fixed ion concentration and thermal stability were investigated. The RSM based on the Box-Behnken design (BBD) model was employed to simulate and evaluate the influence of preparation conditions on the properties of CEMs.
View Article and Find Full Text PDFThe fouling mechanism of the anion exchange membrane (AEM) induced by natural organic matter (NOM) in the absence and presence of calcium ions was systematically investigated via the extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) approach. Sodium alginate (SA), humic acid (HA), and bovine serum albumin (BSA) were utilized as model NOM fractions. The results indicated that the presence of calcium ions tremendously aggravated the NOM fouling on the anion exchange membrane because of Ca-NOM complex formation.
View Article and Find Full Text PDFColloidal silica involved fouling behaviors in direct contact membrane distillation (DCMD), vacuum membrane distillation (VMD) and sweeping gas membrane distillation (SGMD) were studied. Three foulants were used in the experiments, including colloidal silica as representative of particulate foulants, calcium bicarbonate as dissolved inorganic foulant, and NOM (humic acid + alginate + BSA) as the dissolved organic foulant. The three types of fouants were combined to produce four different feed waters: silica alone; silica + calcium bicarbonate; silica + NOM; and silica + calcium bicarbonate + NOM.
View Article and Find Full Text PDFLow sugar concentration and the presence of various inhibitors are the major challenges associated with lignocellulosic hydrolyzates as a fermentation broth. Vacuum membrane distillation (VMD) process can be used to concentrate sugars and remove inhibitors (furans) efficiently, but it's not desirable for the removal of less volatile inhibitors such as acetic acid. In this study, a VMD-adsorption process was proposed to improve the removal of acetic acid, achieving simultaneous concentration and detoxification of lignocellulosic hydrolyzates by one step process.
View Article and Find Full Text PDFAn improved understanding of a filler’s surface properties is important for determining the most effective polymer reinforcement fillers. In this work, the surface characteristics of two biofillers, namely, clam shell modified by hydrochloric acid (AMF) and furfural (FMF), were investigated using inverse gas chromatography (IGC). The IGC results showed that the dispersive surface energy (γ(S)(D)) contributed the major part to the total surface energy for the biofillers.
View Article and Find Full Text PDFBackground: Tumor hypoxia contributes to loco-regional failure, and for optimal treatment planning, knowledge about tumor hypoxia in individual patients is required. Nitroimidazole-based tracers, which are retained in hypoxic cells, allow PET-based assessment of tumor hypoxia, but current tracers are characterized by slow tracer retention and clearance, resulting in low inter-tissue contrast. Pimonidazole is an immune detectable hypoxia marker widely used for detection of hypoxia in tumor samples.
View Article and Find Full Text PDFBioresour Technol
September 2013
In this study, vacuum membrane distillation (VMD) was used to remove two prototypical fermentation inhibitors (acetic acid and furfural) from lignocellulose hydrolyzates. The effect of operating parameters, such as feed temperature and feed velocity, on the removal efficiencies of inhibitors was investigated. Under optimal conditions, more than 98% of furfural could be removed by VMD.
View Article and Find Full Text PDFAlcohol Clin Exp Res
March 2006
Background: Accumulated evidence has demonstrated that both oxidative stress and abnormal cytokine production, especially tumor necrosis factor-alpha (TNF), play important etiological roles in the pathogenesis of alcoholic liver disease (ALD). Agents that have both antioxidant and anti-inflammation properties, particularly anti-TNF production, represent promising therapeutic interventions for ALD. We investigated the effects and the possible mechanism(s) of silymarin on liver injury induced by acute ethanol (EtOH) administration.
View Article and Find Full Text PDF