The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy.
View Article and Find Full Text PDFStructure color, arising from the interaction of light with regularly arranged sub-micrometer-sized structures, has spurred interest in sensor design. However, typical cellulose nanocrystal (CNC) photonic films derived from biomass, known for their sustainability and cost-effectiveness, often suffer from limited sensitivity and slow response times due to their dense structure. To address this challenge, we have utilized a unidirectional interlayer freezing-photopolymerization strategy to introduce porous structures into CNC photonic films without compromising their vibrant structural color.
View Article and Find Full Text PDFHigh-sensitivity strain sensing elements with a wide strain range, fast response, high stability, and small sensing areas are desirable for constructing strain sensor arrays with high temporospatial resolution. However, current strain sensors rely on crack-based conductive materials having an inherent tradeoff between their sensing area and performance. Here, we present a molecular-level crack modulation strategy in which we use layer-by-layer assembly to introduce strong, dynamic, and reversible coordination bonds in an MXene and silver nanowire-matrixed conductive film.
View Article and Find Full Text PDFTitanium carbide MXene quantum dots (MQDs) possess intrinsic regulatory properties and selective toxicity to cancer cells. Here, MDQs were selected for the modification of hydroxyapatite (HA) microspheres, and MXene quantum dots-modified hydroxyapatite (MQDs-HA) hollow microspheres with controllable shapes and sizes were prepared as bone drug carriers. The results show that the prepared MQDs-HA hollow microspheres had a large BET surface area (231.
View Article and Find Full Text PDFAs a promising photocatalyst material, g-CN has great application potential in energy production and environmental improvement. In this work, surface-modified g-CN nanosheets with excellent stability and high photocatalytic activity were successfully synthesized by physical steam activation. The charge transfer rate of carbon nitride was improved due to the synergistic effect of nitrogen defect and oxygen doping caused by steam activation.
View Article and Find Full Text PDFCarbon-based supercapacitors with high performance have a wide foreground among various energy storage devices. In this work, wood-based hollow carbon spheres (WHCS) were prepared from liquefied wood through the processes of emulsification, curing, carbonization, and activation. Then, the hydrodeposition method was used to introduce nickel sulfide (NiS) to the surface of the microspheres, obtaining NiS/WHCS as the supercapacitor electrode.
View Article and Find Full Text PDFBiomineral materials such as nacre of shells exhibit high mechanical strength and toughness on account of their unique "brick-mortar" multilayer structure. 2-Ureido-4[1]-pyrimidinone (UPy) derivatives with different types of end groups, due to the self-complementary quadruple hydrogen bonds and abundant Ca binding sites, can easily self-assemble into supramolecular aggregates and act as templates and skeleton in the process of inducing mineral crystallization. In this work, UPy derivatives were used as templates to induce the mineralization and growth of CaCO through a CO diffusion method.
View Article and Find Full Text PDF