Publications by authors named "Xiaorui Tang"

The screening of based target compounds supported by LC/MS, MS/MS and Global Natural Products Social (GNPS) used to identify the compounds 1-10 of Butea monsperma. They were evaluated in human malignant embryonic rhabdomyoma cells (RD cells) infected with Human coronavirus OC43 (HCoV-OC43) and showed significant inhibitory activity. Target inhibition tests showed that compounds 6 and 8 inhibited the proteolytic enzyme 3CLpro, which is widely present in coronavirus and plays an important role in the replication process, with an effective IC value.

View Article and Find Full Text PDF

The United States Food and Drug Administration (FDA) ensures that patients in the United States have access to safe and effective medical devices. The division of neurological and physical medicine devices reviews medical technologies that interface with the nervous system, including many neuromodulation devices. This article focuses on neuromodulation devices and addresses how to navigate the FDA's regulatory landscape to successfully bring devices to patients.

View Article and Find Full Text PDF

The United States Food and Drug Administration (FDA) ensures that patients in the U.S. have access to safe and effective medical devices.

View Article and Find Full Text PDF

Background: The use of isoflurane sedation for prolonged periods in the critical care environment is increasing. However, isoflurane-mediated neurotoxicity has been widely reported. The goal of the present study was to determine whether long-term exposure to low-dose isoflurane in mechanically ventilated rodents is associated with evidence of neurodegeneration or neuroinflammation.

View Article and Find Full Text PDF

There is a large amount of evidence linking obstructive sleep apnea (OSA), and the associated intermittent hypoxia that accompanies it, with the development of hypertension. For example, cross-sectional studies demonstrate that the prevalence of hypertension increases with the severity of OSA (Bixler et al., 2000; Grote et al.

View Article and Find Full Text PDF

Brainstem vago-vagal neurocircuits modulate upper gastrointestinal functions. Derangement of these sensory-motor circuits is implicated in several pathophysiological states, such as gastroesophageal reflux disease (GERD), functional dyspepsia and, possibly, pancreatitis. While vagal circuits controlling the stomach have received more attention, the organization of brainstem pancreatic neurocircuits is still largely unknown.

View Article and Find Full Text PDF

The baroreflexes stabilize moment-to-moment arterial pressure. Sinoaortic denervation (SAD) of the baroreflexes results in a large increase in arterial pressure variability (APV) across various species. Due to an incomplete understanding of the nonlinear interactions between central and peripheral systems, the major source of APV remains controversial.

View Article and Find Full Text PDF

The muscle wasting and impaired muscle function in critically ill intensive care unit (ICU) patients delay recovery from the primary disease, and have debilitating consequences that can persist for years after hospital discharge. It is likely that, in addition to pernicious effects of the primary disease, the basic life support procedures of long-term ICU treatment contribute directly to the progressive impairment of muscle function. This study aims at improving our understanding of the mechanisms underlying muscle wasting in ICU patients by using a unique experimental rat ICU model where animals are mechanically ventilated, sedated and pharmacologically paralysed for duration varying between 6 h and 14 days.

View Article and Find Full Text PDF

The sensitivity of the baroreflex determines its stability and effectiveness in controlling blood pressure (BP). Sleep and arousal are reported to affect baroreflex sensitivity, but the findings are not consistent across studies. After statistically correcting the effect of sleep on the baselines in chronically neuromuscular-blocked (NMB) rats, we found that sleep affects BP and heart period (HP) baroreflex gain similarly.

View Article and Find Full Text PDF

A consistent and prominent feature, observed across many species, including our neuromuscular blocked (NMB) rat preparation, is that obliterating the baroafferent inputs to the brainstem, e.g., by sinoaortic denervation (SAD), significantly increases blood pressure variability (BPV).

View Article and Find Full Text PDF

In a long-term neuromuscular blocked (NMB) rat preparation, tetanic stimulation of the aortic depressor nerve (ADN) enhanced the A-fiber evoked responses (ERs) in the cardiovascular region, the nucleus of the solitary tract (dmNTS). The potentiation persisted for at least several hours and may be a mechanism for adaptive adjustment of the gain of the baroreflex, with functional implications for blood pressure regulation. Using a capacitance electrode, we selectively stimulated A-fibers and acquired a stable 10-h "A-fiber only" ER baseline at the dmNTS.

View Article and Find Full Text PDF

In a long-term (7-21 days) neuromuscular blocked (NMB) rat preparation, using precise single-pulse aortic depressor nerve (ADN) stimulation and stable chronic evoked response (ER) recordings from the dorsal-medial solitary nucleus (dmNTS), two different response patterns were observed: continuous and discrete. For the continuous pattern, activity began approximately 3 ms after the stimulus and persisted for 45 ms; for the discrete pattern, two complexes were separated by a gap from approximately 17 to 25 ms. The early complex was probably transmitted via A-fibers: it had a low stimulus current threshold and an average conduction velocity (CV) of 0.

View Article and Find Full Text PDF

The muscle wasting associated with long-term intensive care unit (ICU) treatment has a negative effect on muscle function resulting in prolonged periods of rehabilitation and a decreased quality of life. To identify mechanisms behind this form of muscle wasting, we have used a rat model designed to mimic the conditions in an ICU. Rats were pharmacologically paralyzed with a postsynaptic blocker of neuromuscular transmission, and mechanically ventilated for one to two weeks, thereby unloading the limb muscles.

View Article and Find Full Text PDF

The potency of spinal sympathetic reflexes is increased after spinal injury, and these reflexes may result in life-threatening hypertensive crises in humans. Few, if any, primary afferents project directly to sympathetic preganglionic neurons (SPN). Therefore, spinal sympathetic interneurons (IN) must play a major role in generating dysfunctional sympathetic activity after spinal cord injury.

View Article and Find Full Text PDF

Understanding the relationship between activity recorded in sympathetic nerves and the action potentials of the axons that contribute to that activity is important for understanding the processing of sympathetic activity by the central nervous system. Because this relationship cannot be determined experimentally and is difficult to predict analytically, we simulated the summed action potentials of 300 axons. This simulation closely resembled actual sympathetic activity and permitted us to know how many action potentials contributed to each burst of simulated sympathetic activity and the durations and amplitudes of each burst.

View Article and Find Full Text PDF

We precisely localized and morphologically characterized sympathetically correlated neurons in the acutely transected spinal cord of the rat. We have shown that these neurons are likely members of the spinal networks that generate sympathetic activity after spinal cord transection. In humans with injured spinal cords, these networks are responsible for hypertensive crises that occur in response to ordinarily innocuous stimuli.

View Article and Find Full Text PDF