Regulating the distribution of surface elements in lithium-rich cathode materials can effectively change the electrochemical performance of cathode materials. Considering that the enrichment of Mn element on the surface is the main reason for the irreversible phase transition and dissolution of its surface structure, which in turn is the main reason for performance degradation. Based on the molten salt-assisted sintering method, a lithium rich cathode material with surface rich Ni and Co is designed and prepared.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
High-performance and temperature-resistant lithium-ion batteries (LIBs), which are able to operate at elevated temperatures (i.e., >60 °C) are highly demanded in various fields, especially in military or aerospace exploration.
View Article and Find Full Text PDFA practical and effective approach to improve the cycle stability of high-energy density lithium metal batteries (LMBs) is to selectively regulate the growth of the lithium anode. The design of desolvation and lithiophilic structure have proved to be significant means to regulate the lithium deposition process. Here, a fluorinated polymer lithiophilic separator (LS) loaded with a metal-organic framework (MOF801) is designed, which facilitates the rapid transfer of Li within the separator owing to the MOF801-anchored PF from the electrolyte, Li deposition is confined in the plane resulting from the polymer fiber layer rich in lithiophilic groups (C─F).
View Article and Find Full Text PDFLithium-based rechargeable batteries have dominated the energy storage field and attracted considerable research interest due to their excellent electrochemical performance. As indispensable and ubiquitous components, electrolytes play a pivotal role in not only transporting lithium ions, but also expanding the electrochemical stable potential window, suppressing the side reactions, and manipulating the redox mechanism, all of which are closely associated with the behavior of solvation chemistry in electrolytes. Thus, comprehensively understanding the solvation chemistry in electrolytes is of significant importance.
View Article and Find Full Text PDFCarbon quantum dots (CQDs) as a new class of emerging materials have gradually drawn researchers' concern in recent years. In this work, the graphitic CQDs are prepared through a scalable approach, achieving a high yield with more than 50%. The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCoS composite cathode materials, manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCoS microspheres with Faradaic redox characteristic contributing large capacity.
View Article and Find Full Text PDFCrystalline RuSe2 nanoparticles were prepared by a facile hydrothermal approach followed by thermal treatment, and utilized as a pseudocapacitive electrode material for supercapacitors for the first time, which exhibited a specific capacitance of 100.8 F g-1 at 0.2 A g-1 with good rate performance and superior cycle stability.
View Article and Find Full Text PDFCarbon quantum dots (CQDs) as novel types of emerging materials have aroused tremendous attention in recent years. Herein, we report for the first time a new application of 3D CQD-based composite aerogels as excellent electrode materials for alkaline aqueous batteries. The scalable graphitic CQDs are prepared with high yields (>40%) and further utilized to fabricate the novel nitrogen-doped CQDs/reduced graphene oxide/porous FeO (N-CQDs/rGO/FeO) composite aerogels with different contents of FeO.
View Article and Find Full Text PDF