Acute myeloid leukemia (AML), a malignant disease of the bone marrow, is characterized by the clonal expansion of myeloid progenitor cells and a block in differentiation. The high heterogeneity of AML significantly impedes the development of effective treatment strategies. Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), regulates the expression of downstream target genes through the trimethylation of lysine 27 on histone 3 (H3K27me3).
View Article and Find Full Text PDFA split-type photoelectrochemical (PEC) sensor was designed for the detection of profenofos (PFF) depending on the magnetic-assisted exciton-plasmon interactions (EPI) between the semiconductor substrate and Au NPs. The core-shell BiS nanorods@MoS nanosheets (BiS NRs@MoS NSs) heterostructure nanomaterial with fascinating performance was synthesized and used as the photovoltaic conversion substrate and signal molecules absorption platform. The PEC sensor is operated by co-incubating with the released Au NPs-cDNA from the surface of magnetic beads, originating from the target-triggered DNA double-stranded structure opening event.
View Article and Find Full Text PDFNon-coding RNA are a class of RNA that lack the potential to encode proteins. CircRNAs, generated by a post-splicing mechanism, are a newly discovered type of non-coding RNA with multi-functional covalent loop structures. CircRNAs may play an important role in the occurrence and progression of tumors.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression and physiological processes. LncRNAs are a class of ncRNAs of 200 nucleotides in length. HOX transcript antisense RNA (HOTAIR), a trans-acting lncRNA with regulatory function on transcription, can repress gene expression by recruiting chromatin modifiers.
View Article and Find Full Text PDFmiR-155 is associated with the promotion of tumorigenesis. Herein, we indicate that abnormal miR-155 was negatively correlated with the expression of P21WAF1/Cip1. Our results suggest that miR-155 alters the transcriptome and inhibits the expression of H3F3A in liver cancer cells.
View Article and Find Full Text PDFSeveral microRNAs are associated with carcinogenesis and tumour progression. Herein, our observations suggest both miR24-2 and Pim1 are up-regulated in human liver cancers, and miR24-2 accelerates growth of liver cancer cells in vitro and in vivo. Mechanistically, miR24-2 increases the expression of N6-adenosine-methyltransferase METTL3 and thereafter promotes the expression of miR6079 via RNA methylation modification.
View Article and Find Full Text PDFBackground: The functions of HULC have been demonstrated in several cancers. However, its mechanism has not been elucidated in human liver cancer stem cells.
Methods: Liver cancer stem cells were isolated from Huh7 cells; gene infection and tumorigenesis test in vitro and in vivo were performed.
MicroRNA24-2 (miR24-2) is associated with human tumorigenesis; however, its molecular mechanisms are poorly understood. Herein, our findings demonstrate that miR24-2 promotes the proliferation ability in vitro and the tumorigenic ability in vivo in human liver cancer stem cells (hLCSCs). Mechanically, the miR24-2 targets for 3' UTR (2,627-2,648) of protein arginine methyltransferase 7 (PRMT7) inhibit the translational ability of prmt7 gene.
View Article and Find Full Text PDFmiR675 is highly expressed in several human tumor tissues and positively regulates cell progression. Herein, we demonstrate that miR675 promotes malignant transformation of human mesenchymal stem cells. Mechanistically, we reveal that miR675 enhances the expression of the polyubiquitin-binding protein p62.
View Article and Find Full Text PDFBoth miR675 and pyruvate kinase M2 (PKM2) contribute to malignant progression of tumor, but its functions in liver cancer stem cells remain unclear. Herein, our findings indicate that miR675 plus PKM2 strongly promotes the growth of liver cancer stem cells. Mechanistically, miR675 plus PKM2 enhances the transcriptional activity of SUV39h2.
View Article and Find Full Text PDFBackground: Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear.
Methods: RT-PCR, Western blotting, Chromatin immunoprecipitation (CHIP) assay, RNA Immunoprecipitation (RIP) and tumorignesis test in vitro and in vivo were performed.
MicroRNAs are known to be involved in carcinogenesis. Recently, microRNA-372 (miR372) has been proven to play a substantial role in several human cancers, but its functions in liver cancer remain unclear. Herein, our results demonstrate that miR372 accelerates growth of liver cancer cells in vitro and in vivo.
View Article and Find Full Text PDFInflammatory and autophagy-related gene P62 is highly expressed in most human tumor tissues. Herein, we demonstrate that P62 promotes human mesenchymal stem cells' malignant transformation via the cascade of P62-tumor necrosis factor alpha (TNF-α)-CUDR-CTCF-insulin growth factor II (IGFII)-H-Ras signaling. Mechanistically, we reveal P62 enhances IGFII transcriptional activity through forming IGFII promoter-enhancer chromatin loop and increasing METTL3 occupancy on IGFII 3' UTR and enhances H-Ras overexpression by harboring inflammation-related factors, e.
View Article and Find Full Text PDFToll-like receptor 4 (TLR4) which acts as a receptor for lipopolysaccharide (LPS) has been reported to be involved in carcinogenesis. However, the regulatory mechanism of it has not been elucidated. Herein, we demonstrate that TLR4 promotes the malignant growth of liver cancer stem cells.
View Article and Find Full Text PDFMaternally expressed gene 3 (MEG3) encodes an lncRNA which is suggested to function as a tumor suppressor and has been showed to involve in a variety of cancers. Herein, our findings demonstrate that MEG3 inhibits the malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, MEG3 promotes the expression and maturition of miR122 which targets PKM2.
View Article and Find Full Text PDFChanges in histone lysine methylation status have been observed during cancer formation. JMJD2A protein is a demethylase that is overexpressed in several tumors. Herein, our results demonstrate that JMJD2A accelerates malignant progression of liver cancer cells in vitro and in vivo.
View Article and Find Full Text PDFInflammatory cytokines and lncRNAs are closely associated with tumorigenesis. Herein, we reveal inflammatory cytokines IL6 cooperates with long noncoding RNA CUDR to trigger the malignant transformation of human embryonic stem cells-derived hepatocyte-like stem cells. Mechanistically, IL6 cooperates with CUDR to cause MELLT3 to interact with SUV39h1 mRNA3'UTR and promote SUV39h1 expression.
View Article and Find Full Text PDFThe dysregulation of lncRNAs has increasingly been linked to many human diseases, especially in cancers. Our results demonstrate HULC, MALAT1 and TRF2 are highly expressed in human hepatocellular carcinoma tissues, and HULC plus MALAT1 overexpression drastically promotes the growth of liver cancer stem cells. Mechanistically, both HULC and MALAT1 overexpression enhanced RNA polII, P300, CREPT to load on the promoter region of telomere repeat-binding factor 2(TRF2), triggering the overexpression, phosphorylation and SUMOylation of TRF2.
View Article and Find Full Text PDFCancer stem cells are associated with tumor recurrence. IKK is a protein kinase that is composed of IKKα, IKKβ, IKKγ. Herein, we demonstrate that IKKα plus IKKβ promoted and IKKγ inhibited liver cancer stem cell growth in vitro and in vivo.
View Article and Find Full Text PDFP53 is frequently mutated in human tumors as a novel gain-of-function to promote tumor development. Although dimeric (M340Q/L344R) influences on tetramerisation on site-specific post-translational modifications of p53, it is not clear how dimeric (M340Q/L344R) plays a role during hepatocarcinogenesis. Herein, we reveal that P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of PKM2.
View Article and Find Full Text PDF