Publications by authors named "Xiaoran Jiang"

Amaryllidaceae alkaloids (AAs) are complex plant secondary metabolites possessing a wide range of biological activities. 4'-O-methylnorbelladine (4OMN) is the branchpoint intermediate for the entire AAs, and was the last common intermediate before AA pathway branches diverge. The cyclization of 4OMN by C-C oxidative coupling, which can afford ', ', and ' scaffold, was catalyzed by cytochrome P450 96T (CYP96T) family enzymes.

View Article and Find Full Text PDF

TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in TD.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory skin disease with a prevalence of 0.14% to 1.99%.

View Article and Find Full Text PDF

Background: Subjective wellbeing is an important indicator of health outcomes in children. 24-hour movement behaviours (i.e.

View Article and Find Full Text PDF

Introduction: Red-colored lycopene has received remarkable attention in medicine because of its antioxidant properties for reducing the risks of many human cancers. However, the extraction of lycopene from natural hosts is limited. Moreover, the chemically synthesized lycopene raises safety concerns due to residual chemical reagents.

View Article and Find Full Text PDF

Deep generative models have proven to be effective priors for solving a variety of image processing problems. However, the learning of realistic image priors, based on a large number of parameters, requires a large amount of training data. It has been shown recently, with the so-called deep image prior (DIP), that randomly initialized neural networks can act as good image priors without learning.

View Article and Find Full Text PDF

Halomonas bluephagenesis, a robust and contamination-resistant microorganism has been developed as a chassis for "Next Generation Industrial Biotechnology". The non-model H. bluephagenesis requires efficient tools to fine-tune its metabolic fluxes for enhanced production phenotypes.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible plastics with potential to replace petroleum based plastics. Diversity of PHA monomer structures provides flexibility in material properties to suit more applications. In this study, 5-hydroxyvalerate (5HV) synthesis pathway was established based on intrinsic alcohol/aldehyde dehydrogenases.

View Article and Find Full Text PDF

With the continuous improvement of living standards, the level of physical development of adolescents has improved significantly. The physical functions and healthy development of adolescents are relatively slow and even appear to decline. This paper proposes a novel data mining algorithm based on big data for monitoring of adolescent student's physical health to overcome this problem and enhance young people's physical fitness and mental health.

View Article and Find Full Text PDF

3-Hydroxypropionic acid (3HP), an important three carbon (C3) chemical, is designated as one of the top platform chemicals with an urgent need for improved industrial production. Halomonas bluephagenesis shows the potential as a chassis for competitive bioproduction of various chemicals due to its ability to grow under an open, unsterile and continuous process. Here, we report the strategy for producing 3HP and its copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) by the development of H.

View Article and Find Full Text PDF

We address the problem of light field dimensionality reduction for compression. We describe a local low rank approximation method using a parametric disparity model. The local support of the approximation is defined by super-rays.

View Article and Find Full Text PDF

Halophilic Halomonas bluephagenesis (H. bluephagenesis), a chassis for cost-effective Next Generation Industrial Biotechnology (NGIB), was for the first time engineered to successfully produce L-threonine, one of the aspartic family amino acids (AFAAs). Five exogenous genes including thrA*BC, lysC* and rhtC encoding homoserine dehydrogenase mutant at G433R, homoserine kinase, L-threonine synthase, aspartokinase mutant at T344M, S345L and T352I, and export transporter of threonine, respectively, were grouped into two expression modules for transcriptional tuning on plasmid- and chromosome-based systems in H.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) have found widespread medical applications due to their biocompatibility and biodegradability, while further chemical modification requires functional groups on PHA. Halomonas bluephagenesis, a non-model halophilic bacterium serving as a chassis for the Next Generation Industrial Biotechnology (NGIB), was successfully engineered to express heterologous PHA synthase (PhaC) and enoyl coenzyme-A hydratase (PhaJ) from Aeromonas hydrophila 4AK4, along with a deletion of its native phaC gene to synthesize the short chain-co-medium chain-length PHA copolymers, namely poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhex-5-enoate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyhex-5-enoate). After optimizations of the expression cassette and ribosomal binding site combined with introduction of endogenous acyl-CoA synthetase (fadD), the resulting recombinant strain H.

View Article and Find Full Text PDF

In this paper, we propose a learning-based depth estimation framework suitable for both densely and sparsely sampled light fields. The proposed framework consists of three processing steps: initial depth estimation, fusion with occlusion handling, and refinement. The estimation can be performed from a flexible subset of input views.

View Article and Find Full Text PDF

The large-scale use of petrochemical-based plastics is damaging our environment. Discarded plastics are harmful to both marine and land animals, sometimes causing death when ingested. Biodegradable plastics have gained attentions from the public and the academia to reduce environmental burdens.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biopolyester with good mechanical properties and biodegradability. Large-scale production of PHBV is still hindered by the high production cost. CRISPR/Cas9 method was used to engineer the TCA cycle in Halomonas bluephagenesis on its chromosome for production of PHBV from glucose as a sole carbon source.

View Article and Find Full Text PDF

Downstream is a very expensive process for microbial fermentation. It usually involves complicated equipment and processes to obtain desired chemicals or materials from intra- or/and extracellular spaces of microorganisms. Recently, it becomes possible to simplify the microbial cell separation processes by morphologically engineering the shapes of small microorganisms.

View Article and Find Full Text PDF

Fluorescent materials play an important role in biomedical fields. However, the main types of fluorescent materials suffer from several disadvantages especially the biotoxicity, which largely restrict its wider applications in biological fields. In this study, a highly efficient rare-earth-modified fluorescent material was successfully designed and fabricated based on polyhydroxyalkanoates, which are known as biodegradable and biocompatible materials.

View Article and Find Full Text PDF

Halomonas has been developed as a platform for the next generation industrial biotechnology allowing open and nonsterile growth without microbial contamination under a high-salt concentration and alkali pH. To reduce downstream cost associated with continuous centrifugation and salt containing wastewater treatment, Halomonas campaniensis strain LS21 was engineered to become self-flocculating by knocking out an etf operon encoding two subunits of an electron transferring flavoprotein in the predicted electron transfer chain. Self-flocculation could be attributed to the decrease of the surface charge and increase of the cellular hydrophobicity resulted from deleted etf.

View Article and Find Full Text PDF

Traditional microbial chassis, including Escherichia coli, Bacillus subtilis, Ralstonia eutropha, and Pseudomonas putida, are grown under neutral pH and mild osmotic pressure for production of chemicals and materials. They tend to be contaminated easily by many microorganisms. To address this issue, next-generation industrial biotechnology employing halophilic Halomonas spp.

View Article and Find Full Text PDF

Building up on the advances in low rank matrix completion, this article presents a novel method for propagating the inpainting of the central view of a light field to all the other views. After generating a set of warped versions of the inpainted central view with random homographies, both the original light field views and the warped ones are vectorized and concatenated into a matrix. Because of the redundancy between the views, the matrix satisfies a low rank assumption enabling us to fill the region to inpaint with low rank matrix completion.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the most promising biomaterials expected to be used in a wide range of scenarios. However, its large-scale production is still hindered by the high cost. Here we report the engineering of Halomonas bluephagenesis as a low-cost platform for non-sterile and continuous fermentative production of P(3HB-co-4HB) from glucose.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw) and structures, thus instability on thermo-mechanical properties.

View Article and Find Full Text PDF

Industrial biotechnology aims to produce bulk chemicals including polymeric materials and biofuels based on bioprocessing sustainable agriculture products such as starch, fatty acids and/or cellulose. However, traditional bioprocesses require bioreactors made of stainless steel, complicated sterilization, difficult and expensive separation procedures as well as well-trained engineers that are able to conduct bioprocessing under sterile conditions, reducing the competitiveness of the bio-products. Amid the continuous low petroleum price, next generation industrial biotechnology (NGIB) allows bioprocessing to be conducted under unsterile (open) conditions using ceramic, cement or plastic bioreactors in a continuous way, it should be an energy, water and substrate saving technology with convenient operation procedure.

View Article and Find Full Text PDF

Biosynthesis of polyhydroxyalkanoates (PHA) has been studied since the 1920s. The biosynthesis pathways have been well understood and various attempts have been made to improve the PHA biosynthesis efficiency. Recent progresses have been focused on systematic improvements on PHA biosynthesis including changing growth pattern for rapid proliferation, engineering to enlarge cell sizes for more PHA accumulation space, reprogramming the PHA synthesis pathways using optimized RBS and promoter, redirecting metabolic flux to PHA synthesis using CRISPR/Cas9 tools, and very importantly, the employment of non-traditional host such as halophiles for reduced complexity on PHA production.

View Article and Find Full Text PDF