The polarized Monte Carlo (PMC) model has been applied to study the backscattering measurement of oceanic lidar. This study proposes a PMC model for shipborne oceanic lidar simulation. This model is validated by the Rayleigh scattering experiment, lidar equation, and in-situ lidar LOOP (Lidar for Ocean Optics Profiler) returns [Opt.
View Article and Find Full Text PDFJ Environ Sci (China)
January 2023
Accurate and comprehensive knowledge of the atmospheric environment and its evolution within the coastal ocean boundary layer are necessary for understanding the sources, chemical mechanisms, and transport processes of air pollution in land, sea, and atmosphere. We present an overview of coastal ocean boundary layer detection technology and equipment in China and summarize the progress and main achievements in recent years. China has developed a series of coastal ocean boundary layer detection technologies, including Light Detection and Ranging (LIDAR), turbulent exchange analyzer, air-sea flux analyzer, stereoscopic remote sensing of air pollutants, and oceanic aerosol detection equipment to address the technical bottleneck caused by harsh environmental conditions in coastal ocean regions.
View Article and Find Full Text PDFObtaining turbulence parameters in the marine atmospheric boundary layer (MABL) is limited by the observation environment and cost. Therefore, estimating based on the weather forecast model or combining the model output with limited observations is a more flexible choice. We conducted cruise observation experiments in the Bohai Sea, China, from May 17 to June 4, 2021.
View Article and Find Full Text PDFThe combined data from the ESA Mobile Raman Polarization and Water Vapor Lidar (EMORAL), the LATMOS Bistatic Doppler Cloud Radar System for Atmospheric Studies (BASTA), and the INOE Microwave Radiometer (HATPRO-G2) have been used to explore the synergy for the spatio-temporal discrimination of polarization and molecular, aerosol and cloud scattering. The threshold-based methodology is proposed to perform an aerosol-cloud typing using the three instruments. It is demonstrated for 24 hours of observations on 10 June 2019 in Rzecin, Poland.
View Article and Find Full Text PDFHigh temporal and spatial resolution profiling of aerosol properties is required to study air pollution sources, aerosol transport, and features of atmospheric structures over complex terrain. A polarization Raman LiDAR with remote operation capability was developed for this purpose and deployed in the Vipava Valley, Slovenia, a location in the Alpine region where high concentrations of aerosols originating from a number of different local and remote sources were found. The system employs two high-power Nd:YAG pulsed lasers at 355 nm and 1064 nm as transmitters and provides the capability to extract the extinction coefficient, backscatter coefficients, depolarization ratio, Ångström exponent, and LiDAR ratio profiles.
View Article and Find Full Text PDFAiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL.
View Article and Find Full Text PDFThis paper presents a method for measuring atmosphere temperature profile using a single iodine filter as frequency discriminator. This high spectral resolution lidar (HSRL) is a system reconfigured with the transmitter of a mobile Doppler wind lidar and with a receiving subsystem redesigned to pass the backscattering optical signal through the iodine cell twice to filter out the aerosol scattering signal and to allow analysis of the molecular scattering spectrum, thus measuring temperatures. We report what are believed to be the first results of vertical temperature profiling from the ground to 16 km altitude by this lidar system (power-aperture product=0.
View Article and Find Full Text PDFThis paper briefly discusses the mobile ground-based incoherent Doppler wind lidar system, with iodine filters as receiving frequency discriminators, developed by the Ocean Remote Sensing Laboratory, Ocean University of Qingdao, China. The presented result of wind profiles in October and November 2000, retrieved from the combined Mie and Rayleigh backscattering, is the first report to our knowledge of wind measurements in the troposphere by such a system, where the required independent measurement of aerosol-scattering ratio can also be performed. A second iodine vapor filter was used to lock the laser to absolute frequency reference for both wind and aerosol-scattering ratio measurements.
View Article and Find Full Text PDF