Publications by authors named "Xiaoqing Bai"

Traditionally before solving the optimal power flow considering uncertainty (OPF-U) problem, the predicted value of uncertainty parameters, such as wind power, e.g., is derived from data using a statistics approach or machine learning.

View Article and Find Full Text PDF

Vascular endothelial barrier dysfunction is the most prominent manifestation and important cause of mortality in infectious acute lung injury (ALI). Exogenous apelin is effective in ameliorating lipopolysaccharide (LPS)-induced inflammatory response in ALI lungs, reducing exudation of lung tissue and decreasing mortality. This study set out to investigate the association between apelin and Friend leukemia integration-1 (Fli-1) in the prevention and treatment of ALI, and to elucidate the molecular mechanism by which apelin protects the permeability of the vascular endothelial barrier.

View Article and Find Full Text PDF

Background: Remifentanil-induced postoperative hyperalgesia is an intractable side effect of the clinical use of remifentanil, the mechanism of which remains obscure, especially in the peripheral nervous system. N-methyl-D-aspartate receptor (NMDAR) phosphorylation in dorsal root ganglion (DRG) plays a pronociceptive role in neuropathic pain. The contribution of the P2Y1 purinergic receptor (P2Y1R) in DRG to pain hypersensitivity derived from various origins and P2Y1R upregulation-induced NMDAR activation in neurons have also been uncovered.

View Article and Find Full Text PDF

Background: Remifentanil can induce postinfusion cold hyperalgesia. N-methyl-d-aspartate receptor (NMDAR) activation and upregulation of transient receptor potential melastatin 8 (TRPM8) membrane trafficking in dorsal root ganglion (DRG) are critical to cold hyperalgesia derived from neuropathic pain, and TRPM8 activation causes NMDAR-dependent cold response. Contribution of P2Y1 purinergic receptor (P2Y1R) activation in DRG to cold pain hypersensitivity and NMDAR activation induced by P2Y1R upregulation in neurons are also unraveled.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptor α3 subtype (α3-nAChR) plays a pivotal role in regulating inflammatory responses. Inflammation leads to the adipose tissue dysfunction and further increases the risk of metabolic and cardiovascular diseases. Therefore, we hypothesize that α3-nAChR could regulate the disorder of adipose functions.

View Article and Find Full Text PDF

In this work, binary hydrogel films based on carboxylated multi-walled carbon nanotubes/poly(,-diethylacrylamide) (c-MWCNTs/PDEA) were successfully polymerized and assembled on a glassy carbon (GC) electrode surface. The electroactive drug probes matrine and sophoridine in solution showed reversible thermal-, salt-, methanol- and pH-responsive switchable cyclic voltammetric (CV) behaviors at the film electrodes. The control experiments showed that the pH-responsive property of the system could be ascribed to the drug components of the solutions, whereas the thermal-, salt- and methanol-sensitive behaviors were attributed to the PDEA constituent of the films.

View Article and Find Full Text PDF

Background: Genesis of novel gene regulatory modules is largely responsible for morphological and functional evolution. De novo generation of novel cis-regulatory elements (CREs) is much rarer than genomic events that alter existing CREs such as transposition, promoter switching or co-option. Only one case of de novo generation has been reported to date, in fish and without involvement of phenotype alteration.

View Article and Find Full Text PDF