Publications by authors named "Xiaoqiang Jin"

Article Synopsis
  • * A new conductive hydrogel electrode made from graphene oxide-polyaniline/GelMA has been developed to reduce cochlear damage and support the delivery of neural stem cells (NSCs), which can differentiate into neurons when stimulated electrically.
  • * The study suggests that the differentiation of these NSCs is influenced by calcium signaling pathways and GABAergic synapses, providing insight for future treatments of sensorineural deafness using this innovative hydrogel technology.
View Article and Find Full Text PDF

Tumor-associated macrophage (TAM) reprogramming is a promising therapeutic approach for cancer immunotherapy; however, its efficacy remains modest due to the low bioactivity of the recombinant cytokines used for TAM reprogramming. mRNA therapeutics are capable of generating fully functional proteins for various therapeutic purposes but accused for its poor sustainability. Inspired by kinetic energy recovery systems (KERS) in hybrid vehicles, a cytokine efficacy recovery system (CERS) is designed to substantially augment the therapeutic index of mRNA-based tumor immunotherapy via a "capture and stabilize" mechanism exerted by a nanostructured mineral coating carrying therapeutic cytokine mRNA.

View Article and Find Full Text PDF

Deep tissue infection is a common clinical issue and therapeutic difficulty caused by the disruption of the host antibacterial immune function, resulting in treatment failure and infection relapse. Intracellular pathogens are refractory to elimination and can manipulate host cell biology even after appropriate treatment, resulting in a locoregional immunosuppressive state that leads to an inadequate response to conventional anti-infective therapies. Here, a novel antibacterial strategy involving autogenous immunity using a biomimetic nanoparticle (NP)-based regulating system is reported to induce in situ collaborative innate-adaptive immune responses.

View Article and Find Full Text PDF

Platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor receptor-β (PDGFR-β) pathway is conventionally considered as an important pathway to promote osteogenesis; however, recent study suggested its role during osteogenesis to be controversial. Regarding the differential functions of this pathway during 3 stages of bone healing, we hypothesized that temporal inhibition of PDGF-BB/PDGFR-β pathway could shift the proliferation/differentiation balance of skeletal stem and progenitor cells, toward osteogenic lineage, which leads to improved bone regeneration. We first validated that inhibition of PDGFR-β at late stage of osteogenic induction effectively enhanced differentiation toward osteoblasts.

View Article and Find Full Text PDF

Invasion and metastasis are the leading causes of death of patients with CRC. 5-Fluorouracil is widely used in clinic practice as the basic chemotherapy drug for CRC. However, it is inefficient in inhibiting tumor metastasis.

View Article and Find Full Text PDF

The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM-constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC.

View Article and Find Full Text PDF

Bacterial infections occur frequently during the implantation of medical devices, and functional coating is one of the effective means to prevent and remove biofilms. In this study, three different hydrophilic polyoxazolines with carboxyl groups (aPOx: PT1, PT2 and PT3) and bactericidal silver nanoparticles (AgNPs) were synthesized successfully, and an aPOx-AgNP multilayer film was prepared by electrostatic layer-by-layer self-assembly. The effect of charge density and assembly solution concentration was explored, and the optimal self-assembly parameters were established (PT2 1 mg/mL and AgNPs 3 mg/mL).

View Article and Find Full Text PDF

Background: Tumor resection and prosthetic replacement have become the treatments of choice for malignant bone tumors. Infections are the leading cause of failure of limb salvage surgeries. Therefore, treating infections around prostheses after limb salvage is essential and challenging.

View Article and Find Full Text PDF

For conductive hydrogels applied in biosensors, wearable devices and so forth, multifunctionality is an inevitable trend of development to meet various practical requirements and enhance human experience. Herein, inspired by nanocomposite, double-network (DN) and mussel chemistry, a new Graphene oxide@Dopamine/Alginate/Poly(acrylic acid-co-acrylamide) [GO@DA/Alginate/P(AAc-co-AAm)] hydrogel was fabricated through one-pot in-situ radical copolymerization. GO@DA nanofillers, prepared via GO confined DA polymerization, imparted the hydrogel with remarkable adhesiveness.

View Article and Find Full Text PDF

The evolution of thin-liquid films in a microchannel is one of the most critical and intricate phenomena to understand two-phase movement, evaporation, micromixing, heat transfer, chemical synthesis, biological processes, and efficient energy devices. In this paper, we demonstrate experimentally the effect of a liquid film on the removal of an initially dry and lodged bubble in laser-etched poly(methyl methacrylate) microfluidic networks and discuss the evolution of the liquid film in accordance with the bubble superficial velocity and the effect of liquid properties and branch angle on the evolution of the liquid film and the pressure drop. During the removal of a dry bubble, four stages have been observed in the bubble velocity profile and they directly relate to the evolution of the liquid film.

View Article and Find Full Text PDF

A self-supported CuO/Cu nanowire electrode (CuO/CuNWE), which was prepared by annealing Cu nanowires to form a porous Cu nanowire electrode (CuNWE) and then anodizing the as-prepared CuNWE in alkaline medium to generate Cu(OH) nanowires followed by calcination, was employed for chemical oxygen demand (COD) determination using cyclic voltammetry (CV). The structure and electrochemical behavior of the CuO/CuNWE were investigated by scanning electron microscopy, X-ray diffraction, and CV. The results indicated that the as-synthesized CuO/CuNWE, in which CuO nanowires with a length of several micrometers and a diameter of 100 to 300 nm could be found, was stable in alkaline medium and more electrocatalytically active for oxidizing a wide range of organic compounds in comparison with the CuNWE.

View Article and Find Full Text PDF

Due to the biocompatibility, biodegradability and numerous resources of chitosan (CS), CS screws attract much more attention, as a new generation of internal fixation devices. Herein, a facile solution-casting method was utilized to fabricate CS composite screws with a steel-concrete structure by combining graphene oxide (GO) and CS fiber bundles. The embedding GO endowed CS screws with a Honeycomb-Cobweb network.

View Article and Find Full Text PDF

Bubble lodgment in a complex capillary network is a common issue in many industrial and biological processes. Research work reported in the literature only investigated bubble dislodgment in single channels and did not consider the effect of network complexity on the dislodgment. This paper focuses on the pressure required to dislodge single bubbles from a microscopic capillary network and investigates the factors affecting the dislodging pressure to facilitate the precise control of bubble flows in porous media.

View Article and Find Full Text PDF

DNA G-quadruplex is an attractive drug target for anticancer therapy. Most G-quadruplex ligands have little selectivity, due to π-stacking interaction with common G-tetrads surface. Thanks to the varieties of G-quadruplex grooves, the groove-binding ligand is expected to create high selectivity.

View Article and Find Full Text PDF