Publications by authors named "Xiaoqian Cai"

A novel phase sequence for the transition from the double diamond to the double gyroid cubic phases via two non-cubic intermediate phases, an orthorhombic (O) phase and a hexagonal 6/ (H) phase, is reported for specifically designed bolapolyphiles composed of a linear rod-like bistolane core with sticky glycerol ends and two branched central and two linear peripheral side chains. These liquid crystalline (LC) phases represent members of a new class of unicontinuous network phases, formed by longitudinal rod bundles with polar spheres acting as junctions and the alkyl chains forming the continuum around them. In contrast to previously known bicontinuous cubic networks, they combine different junctions with different angles in a common structure, and one of them even represents a triple network instead of the usually found double networks.

View Article and Find Full Text PDF

Mirror symmetry breaking in systems composed of achiral molecules is of importance for the design of functional materials for technological applications as well as for the understanding of the mechanisms of spontaneous emergence of chirality. Herein, we report the design and molecular self-assembly of two series of rod-like achiral polycatenar molecules derived from a π-conjugated 5,5'-diphenyl-2,2'-bithiophene core with a fork-like triple alkoxylated end and a variable single alkylthio chain at the other end. In both series of liquid crystalline materials, differing in the chain length at the trialkoxylated end, helical self-assembly of the π-conjugated rods in networks occurs, leading to wide temperature ranges (>200 K) of bicontinuous cubic network phases, in some cases being stable even around ambient temperatures.

View Article and Find Full Text PDF

Achiral multi-chain (polycatenar) compounds based on the 2,7-diphenyl substituted [1]benzothieno[3,2-b]benzothiophene (BTBT) unit and a 2,6-dibromo-3,4,5-trialkoxybenzoate end group lead to materials forming bicontinuous cubic liquid crystalline phases with helical network structures over wide temperature ranges.

View Article and Find Full Text PDF

Benzil (diphenylethane-1,2-dione), which is a long known example for an achiral molecule crystallizing in a chiral space group, can also show mirror symmetry breaking in the fluid state if it is suitably functionalized. For some of the new benzil derivatives even three different subsequent mirror symmetry broken soft matter states with a chiral conglomerate structure can be observed. One is an isotropic liquid, the second one a cubic liquid crystal with a complex network structure and the third is a soft crystalline solid.

View Article and Find Full Text PDF