Background: Carotid duplex ultrasonography (DUS) is the primary screening tool for carotid artery stenosis, but has low reliability. MHR, which is the ratio of monocytes to high-density lipoprotein cholesterol (HDL-C), can be a marker for the degree and distribution of extracranial and intracranial atherosclerotic stenosis.
Objective: We determined the diagnostic value of DUS+MHR for internal carotid artery (ICA) stenosis.
Retinal imaging being a potential biomarker for Alzheimer's disease is gradually attracting the attention of researchers. However, the association between retinal parameters and AD neuroimaging biomarkers, particularly structural changes, is still unclear. In this cross-sectional study, we recruited 25 cognitively impaired (CI) and 21 cognitively normal (CN) individuals.
View Article and Find Full Text PDFIntroduction: Neuro-navigated repetitive transcranial magnetic stimulation (rTMS) is effective in alleviating cognitive deficits in Alzheimer's disease (AD). However, the strategy for target determination and the mechanisms for cognitive improvement remain unclear.
Methods: One hundred and thirteen elderly subjects were recruited in this study, including both cross-sectional (n = 79) and longitudinal experiments (the rTMS group: n = 24; the sham group: n = 10).
Cortical visual system dysfunction is closely related to the progression of Alzheimer's Disease (AD), while retinal vascular structures play an important role in the integrity of the function of the visual network and are a potential biomarker of AD. This study explored the association between the cortical visual system and retinal vascular structures in AD-spectrum patients, and it established a screening tool to detect preclinical AD based on these parameters identified in a retinal examination. A total of 42 subjects were enrolled and were distributed into two groups: 22 patients with cognitive impairment and 20 healthy controls.
View Article and Find Full Text PDFAims: This research aimed to explore alterations in the local gyrification index (GI) and resting-state functional connectivity (RSFC) in type 2 diabetes mellitus (T2DM) patients with mild cognitive impairment (MCI).
Methods: In this study, 126 T2DM patients with MCI (T2DM-MCI), 154 T2DM patients with normal cognition (T2DM-NC), and 167 healthy controls (HC) were recruited. All subjects underwent a battery of neuropsychological tests.
Purpose: Combined the number, volume, and location of cerebral microbleeds (CMBs), this study aimed to explore the different features of CMBs and their correlation with cognitive ability in patients with type 2 diabetes mellitus (T2DM).
Methods: This study recruited 95 patients with T2DM and 80 healthy control (HC) individuals. AccuBrain, an automated tool, was used to obtain the number and volume of CMBs.
Background: Stimulating superficial brain regions highly associated with the hippocampus by repetitive transcranial magnetic stimulation (rTMS) may improve memory of Alzheimer's disease (AD) spectrum patients.
Objective: We recruited 16 amnesic mild cognitive impairment (aMCI) and 6 AD patients in the study. All the patients were stimulated to the left angular gyrus, which was confirmed a strong link to the hippocampus through neuroimaging studies, by the neuro-navigated rTMS for four weeks.
Background: Abnormal default mode network (DMN) was associated with the progress of Alzheimer's disease (AD). Rather than treat the DMN as a unitary network, it can be further divided into three subsystems with different functions.
Objective: It remains unclear the interactions of DMN subsystems associated with the progress of cognitive impairments and AD pathological features.
Objectives: Subjective cognitive decline (SCD) may be a preclinical stage of Alzheimer's disease (AD). Neuroimaging studies suggest that abnormal brain connectivity plays an important role in the pathophysiology of SCD. However, most previous studies focused on single modalities only.
View Article and Find Full Text PDFBackground: Structural network alterations in Alzheimer's disease (AD) are related to worse cognitive impairment. The aim of this study was to quantify the alterations in gray matter associated with impaired cognition and their pathological biomarkers in AD-spectrum patients.
Methods: We extracted gray matter networks from 3D-T1 magnetic resonance imaging scans, and a graph theory analysis was used to explore alterations in the network metrics in 34 healthy controls, 70 mild cognitive impairment (MCI) patients, and 40 AD patients.
Background: Self-referential processing is associated with the progression of Alzheimer's disease (AD), and cerebrospinal fluid (CSF) proteins have become accepted biomarkers of AD.
Objective: Our objective in this study was to focus on the relationships between the self-referential network (SRN) and CSF pathology in AD-spectrum patients.
Methods: A total of 80 participants, including 20 cognitively normal, 20 early mild cognitive impairment (EMCI), 20 late MCI (LMCI), and 20 AD, were recruited for this study.
Neuroimaging evidence has suggested white matter microstructure are heavily affected in Alzheimer's disease (AD). However, whether white matter dysfunction is localized at the specific regions of fiber tracts and whether they would be a potential biomarker for AD remain unclear. By automated fiber quantification (AFQ), we applied diffusion tensor images from 25 healthy controls (HC), 24 amnestic mild cognitive impairment (aMCI) patients and 18 AD patients to create tract profiles along 16 major white matter fibers.
View Article and Find Full Text PDFBackground: Subjective cognitive decline (SCD) is a preclinical stage along the Alzheimer's disease (AD) continuum. However, little is known about the aberrant patterns of connectivity and topological alterations of the brain functional connectome and their diagnostic value in SCD.
Methods: Resting-state functional magnetic resonance imaging and graph theory analyses were used to investigate the alterations of the functional connectome in 66 SCD individuals and 64 healthy controls (HC).
Syntheses of the potent sulfur-containing tetrapeptide mimetic farnesyl transferase inhibitors B956 (22) and B957 (23) are described. The two double bonds in 22 and 23 were constructed by application of iterative NHK and cuprate S(N)2' reactions. Normal syn NHK reaction and substrate-dependent syn and anti-S(N)2' diastereoselectivities accompanied by exclusive E-olefin selectivity were observed for the first NHK iteration (1 --> 4).
View Article and Find Full Text PDF