Publications by authors named "Xiaoni Ran"

Pyridine is a widely employed nitrogen-containing heterocyclic organic, and the discharge of pyridine wastewater poses substantial environmental challenges due to its recalcitrance and toxicity. Co-metabolic degradation emerged as a promising solution. In this study, readily degradable glucose and the structurally analogous phenol were used as co-metabolic substrates respectively, and the corresponding mechanisms were thoroughly explored.

View Article and Find Full Text PDF

The treatment of mature landfill leachate by EF-Fere (also called Fered-Fenton) method was carried out in a continuous stirred tank reactor (CSTR) using Ti/RuO(2)-IrO(2)-SnO(2)-TiO(2) mesh anodes and Ti mesh cathodes. The effects of important parameters, including initial pH, inter-electrode gap, H(2)O(2) to Fe(2+) molar ratio, H(2)O(2) dosage and hydraulic retention time, on COD removal were investigated. The results showed that the complete mixing condition was fulfilled in the electrochemical reactor employed in this study and COD removal followed a modified pseudo-first order kinetic model.

View Article and Find Full Text PDF

The influence of different variables in the photoelectro-Fenton process for the decolorization of Orange II was investigated using an experimental design methodology. The variables considered in this study include electrical current, Fe(3+) concentration, H(2)O(2) concentration and initial pH. Response factors were decolorization efficiencies after 30, 90 and 120 min of reaction time, for an initial dye concentration of 100 mg/L.

View Article and Find Full Text PDF

Box-Behnken statistical experiment design and response surface methodology were used to investigate electrochemical oxidation of mature landfill leachate pretreated by sequencing batch reactor (SBR). Titanium coated with ruthenium dioxide (RuO(2)) and iridium dioxide (IrO(2)) was used as the anode in this study. The variables included current density, inter-electrode gap and reaction time.

View Article and Find Full Text PDF