Publications by authors named "Xiaonan Lu"

Fermented sausages are popular meat products with many different varieties. The aroma of fermented sausages depends on the metabolic activities of microbiota, mainly involving lactic acid bacteria and catalase-positive cocci, the group of coagulase-negative staphylococci (CNS) in particular. Regarding staphylococci, this work elucidated their generation of aroma precursors from hydrolase, metabolic activities contributing to aroma development, antioxidant effects that improve aroma via preventing excessive lipid oxidation.

View Article and Find Full Text PDF

Natural toxins, mainly small molecules, are a category of chemical hazards in agri-food systems that pose threats to both public health and food security. Current standard methods for monitoring these toxins, predominantly based on liquid chromatography-mass spectrometry, are costly, labor-intensive, and complex. This study presents the development of a novel microfluidic optical aptasensor for rapid detection of small molecules based on analyte-tuned growth of gold nanoseeds combined with machine learning-enhanced spectrum analysis.

View Article and Find Full Text PDF

Unlabelled: Human norovirus (HuNoV) is recognized as the leading causative agent of foodborne outbreaks of epidemic gastroenteritis. Consequently, there is a high demand for developing point-of-care testing for HuNoV. We developed an origami microfluidic device that facilitates rapid detection of murine norovirus 1 (MNV-1), a surrogate for HuNoV, encompassing the entire process from sample preparation to result visualization.

View Article and Find Full Text PDF

Ecosystem services (ESs) are essential for human well-being and are relevant to the region's sustainable development. Most studies have emphasized the importance of high ecosystem services areas for entire regions. However, some locations with particular contributions to a region's ecosystem services are still overlooked.

View Article and Find Full Text PDF

Total phenolic content (TPC) and antioxidant capacity of maple syrup were determined using Raman spectroscopy and deep learning. TPC was determined by Folin-Ciocalteu assay, while the antioxidant capacity was measured by 2,2-diphenyl-1picrylhydrazyl (DPPH) assay, oxygen radical absorbance capacity (ORAC) assay, and ferric reducing antioxidant power (FRAP) assay. A total of 360 spectra were collected from 36 maple syrup samples of different colours (dark, amber, light) by both benchtop and portable Raman spectrometers.

View Article and Find Full Text PDF

The total phenolic content (TPC) and antioxidant capacity (TAC) of haskap berries cultivated in various locations across Alberta were analyzed using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The Folin-Ciocalteu assay was used to determine TPC, while TAC was quantified by 2,2-diphenyl-1-picrylhydrazl radicals (DPPH) assay and oxygen radical absorbance capacity (ORAC) assay. Three tenfold cross-validated partial least-squares regression (PLSR) models and three fivefold cross-validated deep learning models were developed separately based on FT-IR spectra collected from 22 haskap berry samples and their corresponding reference values determined through Folin-Ciocalteu, DPPH, and ORAC assays.

View Article and Find Full Text PDF

Integration of machine learning (ML) technologies into the realm of smart food safety represents a rapidly evolving field with significant potential to transform the management and assurance of food quality and safety. This chapter will discuss the capabilities of ML across different segments of the food supply chain, encompassing pre-harvest agricultural activities to post-harvest processes and delivery to the consumers. Three specific examples of applying cutting-edge ML to advance food science are detailed in this chapter, including its use to improve beer flavor, using natural language processing to predict food safety incidents, and leveraging social media to detect foodborne disease outbreaks.

View Article and Find Full Text PDF

Echocardiography-guided percutaneous intramyocardial septal radiofrequency ablation (PIMSRA, Liwen procedure) is a novel treatment option for hypertrophic obstructive cardiomyopathy (HOCM). The safety and feasibility of using this procedure for cryoablation are unknown. We aimed to investigate the feasibility and safety of echocardiography-guided percutaneous intramyocardial septal cryoablation (PIMSCA) for septal thickness reduction in a canine model.

View Article and Find Full Text PDF

The synthesis methods, crystal structures, and properties of anhydrous monazite and xenotime (REPO) crystalline materials are summarized within this review. For both monazite and xenotime, currently available Inorganic Crystal Structure Database data were used to study the effects of incorporating different RE cations on the unit cell parameters, cell volumes, densities, and bond lengths. Domains of monazite-type and xenotime-type structures and other AXO compounds (A = RE; X = P, As, V) are discussed with respect to cation sizes.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune disease caused by the loss of immune tolerance to platelet autoantigens, resulting in reduced platelet production and increased platelet destruction. Impaired megakaryocyte differentiation and maturation is a key factor in the pathogenesis and treatment of ITP. Sarcandra glabra, a plant of the Chloranthaceae family, is commonly used in clinical practice to treat ITP, and daucosterol (Dau) is one of its active ingredients.

View Article and Find Full Text PDF

We reported the development of a smartphone-integrated microfluidic paper-based optosensing platform for in-situ detection and quantification of histamine in canned tuna. Molecularly imprinted polymers were synthesized via precipitation polymerization and utilized as dispersive solid phase extraction sorbent to selectively extract histamine from canned tuna. Carbon quantum dots functioning as a fluorescent probe were synthesized and introduced onto the microzones of the microfluidic paper device.

View Article and Find Full Text PDF

Mycotoxins are secondary metabolites of certain moulds, prevalent in 60-80% of food crops and many processed products but challenging to eliminate. Consuming mycotoxin-contaminated food and feed can lead to various adverse effects on humans and livestock. Therefore, testing mycotoxin residue levels is critical to ensure food safety.

View Article and Find Full Text PDF

The highly contagious nature and 100% fatality rate contribute to the ongoing and expanding impact of the African swine fever virus (ASFV), causing significant economic losses worldwide. Herein, we developed a cascaded colorimetric detection using the combination of a CRISPR/Cas14a system, G-quadruplex DNAzyme, and microfluidic paper-based analytical device. This CRISPR/Cas14a-G4 biosensor could detect ASFV as low as 5 copies/μL and differentiate the wild-type and mutated ASFV DNA with 2-nt difference.

View Article and Find Full Text PDF

Introduction: Calcium channel gene variations have been reported to be associated with hypertrophic cardiomyopathy (HCM) in family, but the relationship between calcium channel gene variations and HCM remains undefined in the population.

Methods: A total of 719 HCM unrelated patients were initially enrolled. Finally, 371 patients were identified based on inclusion and exclusion criteria, including 145 patients with gene negative, 28 patients with a single rare calcium channel gene variation (calcium gene variation), 162 patients with a single pathogenic/likely pathogenic sarcomere gene variation (sarcomere gene variation) and 36 patients with a single pathogenic/likely pathogenic sarcomere gene variation and a single rare calcium channel gene variation (double gene variations).

View Article and Find Full Text PDF

Recent works have experimentally proven that metal matrix composites (MMCs) with network architecture present improved strength-ductility match. It is envisaged that the performance of architecturally designed composites is particularly sensitive to reinforcement strength. Here, reinforcing particles with various fracture strengths were introduced in numerical models of composites with network particle distribution.

View Article and Find Full Text PDF

Purpose: To characterize the natural history of normal-tension glaucoma (NTG) in Chinese patients.

Methods: The prospective observational cohort study included patients with untreated NTG with a minimum follow-up of 2 years. Functional progression was defined by visual field (VF) deterioration, while structural progression was characterized by thinning of the retinal nerve fiber layer (RNFL) or ganglion cell inner plexiform layer (GCIPL).

View Article and Find Full Text PDF

Purpose: To explore the association between progressive peripapillary capillary vessel density (pcVD) reduction and the progression of visual field (VF) impairment in individuals with normal tension glaucoma (NTG).

Design: Prospective cohort study.

Methods: The study enrolled 110 participants with one eye each, totalling 110 NTG eyes.

View Article and Find Full Text PDF

The present study developed a model for effectively assessing the risk of spoilage caused by Aspergillus niger to identify key control measures employed in bakery supply chains. A white bread supply chain comprising a processing plant and two retail stores in Taiwan was selected in this study. Time-temperature profiles were collected at each processing step in summer and winter.

View Article and Find Full Text PDF

The use of yeast starter cultures is a common practice in the alcoholic beverage fermentation industry. As yeast strains from different or the same species have variable fermentation properties, rapid and reliable typing of yeast strains plays an important role in the final quality of the product. In this study, Raman spectroscopy combined with CNN achieved accurate identification of and isolates at both the species and strain levels in a rapid, non-destructive, and easy-to-operate manner.

View Article and Find Full Text PDF

Pesticide residues in agri-foods have risk to human health and one solution is to develop simple and accurate methods for rapid detection. We developed a SERS sensor composed of gold nanoparticles (AuNPs) and bacterial cellulose nanocrystal (BCNC) to detect thiram in fruit juice. BCNC-SOH was used as a stabilizer to support AuNPs via electrostatic repulsion, fabricating a BCNC-AuNPs SERS substrate with uniformly distributed AuNPs.

View Article and Find Full Text PDF

Food contaminant is a significant issue because of the adverse effects on human health and economy. Traditional detection methods such as liquid chromatography-mass spectroscopy for detecting food contaminants are expensive and time-consuming, and require highly-trained personnel and complicated sample pretreatment. Raman spectroscopy is an advanced analytical technique in a manner of non-destructive, rapid, cost-effective, and ultrasensitive sensing various hazards in agri-foods.

View Article and Find Full Text PDF

Fruits and vegetables are essential horticultural crops for humans. The quality of fruits and vegetables is critical in determining their nutritional value and edibility, which are decisive to their commercial value. Besides, it is also important to understand the changes in key substances involved in the preservation and processing of fruits and vegetables.

View Article and Find Full Text PDF

Determination of pesticide residues remains a challenge in traditional Chinese medicines in which complex compounds may interfere with analysis signals. This study reports the development of a simple, effective, and high-throughput method combining gas chromatography-tandem mass spectrometry (GC-MS/MS) with either QuEChERS or solid phase extraction (SPE) to determine 147 pesticide residues in traditional Chinese medicines simultaneously. In SPE, the mixture of -hexane and ethyl acetate (1:1, v/v) was selected to extract 147 pesticides in honeysuckle, and the extracted pesticides were determined by GC-MS/MS.

View Article and Find Full Text PDF

Dencichine is a nonprotein amino acid, an effective ingredient in with hemostatic and anti-inflammatory effects. There are few studies on the effects of regions and cultivation models on the accumulation of dencichine. In the current study, the content of dencichine in collected from its global cultivation and trading center Yunnan, China, (>640 samples) was determined using an optimized high-performance liquid chromatography method coupled with a diode array detector but without derivatization.

View Article and Find Full Text PDF

Campylobacter jejuni is recognized as the most common species in the genus Campylobacter that causes foodborne diseases. The main reservoirs harboring C. jejuni are poultry products, which are associated with most illnesses, creating a demand for effective detection methods to achieve point-of-need diagnostics.

View Article and Find Full Text PDF