Publications by authors named "Xiaonan L Liu"

This Perspective article expands on a working memory-dependent dual-process model, originally proposed by Zheng et al., to elucidate individual differences in the testing effect. This model posits that the testing effect comprises two processes: retrieval-attempt and post-retrieval re-encoding.

View Article and Find Full Text PDF

Some neural representations gradually change across multiple timescales. Here we argue that modeling this "drift" could help explain the spacing effect (the long-term benefit of distributed learning), whereby differences between stored and current temporal context activity patterns produce greater error-driven learning. We trained a neurobiologically realistic model of the entorhinal cortex and hippocampus to learn paired associates alongside temporal context vectors that drifted between learning episodes and/or before final retention intervals.

View Article and Find Full Text PDF

While many theories assume that sleep is critical in stabilizing and strengthening memories, our recent behavioral study (Liu & Ranganath, 2021, Psychonomic Bulletin & Review, 28[6], 2035-2044) suggests that sleep does not simply stabilize memories. Instead, it plays a more complex role, integrating information across two temporally distinct learning episodes. In the current study, we simulated the results of Liu and Ranganath (2021) using our biologically plausible computational model, TEACH, developed based on the complementary learning systems (CLS) framework.

View Article and Find Full Text PDF

Numerous studies have shown that learned information practiced by testing is better retained than that practiced by restudying (the testing effect). However, results are inconsistent regarding the effect of working memory (WM) capacity on the testing effect. Here, we hypothesize that the effect of WM only emerges when task demands challenge WM capacity.

View Article and Find Full Text PDF

The hippocampus plays a critical role in the rapid learning of new episodic memories. Many computational models propose that the hippocampus is an autoassociator that relies on Hebbian learning (i.e.

View Article and Find Full Text PDF

Retrieval practice improves retention of tested information, and it can either impair or facilitate retention of untested information. Here, we investigated how semantic relatedness, episodic context, and sleep-dependent memory consolidation determine the effects of retrieval practice on retention of untested items. Participants studied lists of scene-word associations.

View Article and Find Full Text PDF

Background: People with schizophrenia (SZ) exhibit impaired episodic memory when relating objects to each other in time and space. Empirical studies and computational models suggest that low-frequency neural oscillations may be a mechanism by which the brain keeps track of temporal relationships during encoding and retrieval, with modulation of oscillatory power as sequences are learned. It is unclear whether sequence memory deficits in SZ are associated with altered neural oscillations.

View Article and Find Full Text PDF

Background: Providing early psychosis (EP) individuals with family psychoeducation (FPE) can reduce symptoms and improve clinical outcomes. However, relational memory problems may limit prospective utilization of FPE information. This study examines whether memory for FPE can be improved by testing participants during the initial FPE workshop presentation.

View Article and Find Full Text PDF

Prior studies demonstrated that neural oscillations are enhanced during working memory (WM) maintenance and that this activity can predict behavioral performance in healthy individuals. However, it is unclear whether the relationship holds for people with WM deficits. People with schizophrenia have marked WM deficits, and such deficits are most prominent when patients are required to process relationships between items, such as temporal order.

View Article and Find Full Text PDF

High-complexity stimuli are thought to place extra demands on working memory when processing and manipulating such stimuli; however, operational definitions of complexity are not well established, nor are the measures that would demonstrate such effects. Here, we argue that complexity is a relative quantity that is affected by preexisting experience. Experiment 1 compared cued-recall performance for Chinese and English speakers when the stimuli involved Chinese features that varied in the number of strokes or involved Ethiopic features unfamiliar to both groups.

View Article and Find Full Text PDF

Prior studies have shown that predictions of subsequent performance (i.e., Judgments of Learning, JoLs) following tests are more accurate than those following re-study and have suggested that retrieval practice allows people to base their predictions on the current retrieval outcomes so that they assign a higher likelihood of remembering to answers with high confidence.

View Article and Find Full Text PDF

The effect of Retrieval Practice refers to the phenomenon that taking a practice test is more effective for learning than re-study, probably due to the benefit from processes underlying successful retrievals during practice. However, it is rarely studied whether other processes (e.g.

View Article and Find Full Text PDF

Theoretical explanations of the testing effect (why people learn better from a test than a re-study) have largely focused on either the benefit of attempting to retrieve the answer or on the benefit of re-encoding the queried information after a successful retrieval. While a less parsimonious account, prior neuroimaging evidence has led us to postulate that both of these processes contribute to the benefit of testing over re-study. To provide further empirical support for our position, we recorded ERPs while subjects attempted to recall the second word of a pair when cued with the first.

View Article and Find Full Text PDF

Introduction: The testing effect refers to superior retention when study is followed by a test rather than followed by another study. Most research to date on why the testing effect occurs has been behavioral, but we employed neuroimaging methods in this study in order to shed light on the underlying processes.

Methods: Subjects were scanned while studying, restudying, and taking cued-recall tests of word pairs (with no feedback).

View Article and Find Full Text PDF

Despite vast efforts to better understand human learning, some principles have been overlooked; specifically, that less familiar stimuli are more difficult to combine to create new knowledge and that this is because less familiar stimuli consume more working memory resources. Participants previously unfamiliar with Chinese characters were trained to discriminate visually similar characters during a visual search task over the course of a month, during which half of the characters appeared much more frequently. Ability to form associations involving these characters was tested via cued recall for novel associations consisting of two Chinese characters and an English word.

View Article and Find Full Text PDF

People learn better when re-study opportunities are replaced with tests. While researchers have begun to speculate on why testing is superior to study, few studies have directly examined the neural underpinnings of this effect. In this fMRI study, participants engaged in a study phase to learn arbitrary word pairs, followed by a cued recall test (recall second half of pair when cued with first word of pair), re-study of each pair, and finally another cycle of cued recall tests.

View Article and Find Full Text PDF

Negative priming (NP) refers to a slower response to a target stimulus if it has been previously ignored. To examine theoretical accounts of spatial NP, we recorded behavioral measures and event-related potentials (ERPs) in a target localization task. A target and distractor briefly appeared, and the participant pressed a key corresponding to the target's location.

View Article and Find Full Text PDF