Publications by authors named "Xiaonan Ji"

Article Synopsis
  • * It details the efficiency of SMFCs in targeting various organic pollutants like antibiotics and oil, and discusses their role in managing phosphorus pollution by controlling its release from sediments.
  • * The review emphasizes the importance of understanding microbial communities in SMFCs and explores strategies like electrode modification to enhance their performance, while calling for further research into their mechanisms and device improvements for practical applications.
View Article and Find Full Text PDF

This study evaluated the inhibitory impacts of phytic acid on the growth of T. roseum both in vitro and in apple fruit, as well as elucidated the potential mechanisms underlying its action. Results showed that phytic acid suppressed the lesion diameter caused by T.

View Article and Find Full Text PDF

Phosphorus-solubilizing bacteria (PSB) assisted phytoremediation of cadmium (Cd) pollution is an effective method, but the mechanism of PSB-enhanced in-situ remediation of Cd contaminated sediment by submerged plants is still rare. In this study, PSB (Leclercia adecarboxylata L1-5) was inoculated in the rhizosphere of Potamogeton crispus L. (P.

View Article and Find Full Text PDF

The selection of different organic ligands when synthesizing metal organic framework (MOFs) can change their effects on the adsorption performance. Here, four La-MOFs adsorbents (La-SA, La-FA, La-TA and La-OA) with different organic ligands and structures were synthesized by solvothermal method for phosphate adsorption, and the relationship between their adsorption properties and structures was established. Among four La-MOFs, their phosphate adsorption capacities and adsorption rates followed La-SA > La-FA > La-TA > La-OA.

View Article and Find Full Text PDF

Phosphorus (P), a non-renewable essential resource, faces heavy exploitation and contributes to eutrophication in aquatic environments. Assessing P input is vital for a healthier P cycle in the Upper Yangtze River (UYR), a phosphate ore rich basin, where P mining and P chemical enterprises have prominent pollution problems. This study modified the net anthropogenic phosphorus input (NAPI) model to include ore mining P input (P).

View Article and Find Full Text PDF

Bioremediation is one of the most promising strategies for heavy metal immobilization. A new remediation system was demonstrated in this research, which combined phosphate solubilizing bacteria (PSB) with nZVI@Carbon/Phosphate (nZVI@C/P) composite to remediate lead contaminated soil. Experimental results indicated that the new system (nZVI@C/P + PSB) could effectively convert the labile Pb into the stable fraction after 30 days of incubation, which increased the maximum residual fraction percentage of Pb by 70.

View Article and Find Full Text PDF

Secondary mineralization is a promising method for remediating cadmium (Cd) pollution in sediments, but the poor stability of Cd-containing secondary minerals is a bottleneck that limits the development of this approach. The existence of phosphate can enhance the formation of stable secondary minerals and points a new direction for Cd immobilization. In this research, a novel syntrophic system composed of phosphate solubilizing bacteria (PSB) and dissimilatory iron reducing bacteria (DIRB) was established and the effect and mechanism of Cd immobilization in the system were also explored.

View Article and Find Full Text PDF

The effects of humic acids (HA) and fulvic acids (FA) on the fate of Cd in anaerobic environment upon microbial reduction of Cd-bearing ferrihydrite (Fh) with Geobacter metallireducens were investigated. The results showed that HA and FA could promote the reductive dissolution of Fh and the formation of vivianite. After incubation of 38 d, vivianite accounted for 47.

View Article and Find Full Text PDF

The activation and conversion of the CO molecule have always been the most vexing challenge due to its chemical inertness. Developing highly active catalysts, which could overcome dynamic limitations, has emerged as a provable and effective method to promote CO activation-conversion. Herein, ETS-10 zeolite-based catalysts, with active nickel species introduced by doping and impregnation, have been employed for CO methanation.

View Article and Find Full Text PDF

The merging of good crystallinity and high dispersibility into two-dimensional (2D) layered crystalline polymers (CPs) still represents a challenge because a high crystallinity is often accompanied by intimate interlayer interactions that are detrimental to the material processibility. We herein report a strategy to address this dilemma using rationally designed three-dimensional (3D) monomers and regioisomerism-based morphology control. The as-synthesized CPs possess layered 2D structures, where the assembly of layers is stabilized by relatively weak van der Waals interactions between C-H bonds other than the usual π-π stackings.

View Article and Find Full Text PDF

Phosphorus (P) recovery from waste streams is an essential choice due to the coming global P crisis. One promising solution is to recover P by microbial electrolysis cell (MEC). Both the P recovery effectiveness and product quality are of critical importance for application.

View Article and Find Full Text PDF

Soil lead pollution becomes a serious environmental problem. Microbial remediation has received widespread attentions due to high efficiency and no secondary pollution. In this research, a noval porous spherical phosphate-solubilizing bacteria bead loaded with biochar/nZVI (Bio-bead) was used to passivate lead in soil, and the effects and microecological regulation mechanisms of this process were also investigated.

View Article and Find Full Text PDF

Municipal sewage sludge, a reservoir of antibiotic resistance genes (ARGs), is usually composted as fertilizer for agricultural application especially in arid and semi-arid areas. The evolution patterns of intracellular ARGs (iARGs) and extracellular ARGs (eARGs) during composting and their responses to soil salinization after long-term compost application kept unclear previously, which were systematically studied in the current study. The variation and dissemination risk of eARGs and iARGs with the salinization of farmland soils was also evaluated.

View Article and Find Full Text PDF

The efficacy of trehalose on the lesion diameter of apples (cv. Golden Delicious) inoculated with was evaluated to screen the optimal concentration. The changes in gene expression and activity of the enzyme in starch, sorbitol, and energy metabolism were also investigated in apples after trehalose treatment.

View Article and Find Full Text PDF

A novel reactivity-triggering strategy for inert organic molecules was developed via the chemical properties of a crystal-solution interface. Upon self-assembling to form a {002} crystal interface, inactive 9-anthracene boric acid was transformed into an ultra-high active state, triggering a catalyst-free, environmentally benign, aromatic substitution and oxidation reaction, which achieved 99% yield in 1 h under ambient conditions.

View Article and Find Full Text PDF

In mercury (Hg)-polluted eutrophic waters, algal blooms are likely to aggravate methylmercury (MeHg) production by causing intensified hypoxia and enriching organic matter at the sediment-water interface. The technology of interfacial oxygen (O) nanobubbles is proven to alleviate hypoxia and may have potential to mitigate the risks of MeHg formation. In this study, incubation column experiments were performed using sediment and overlying water samples collected from the Baihua Reservoir (China), which is currently suffering from co-contamination of Hg and eutrophication.

View Article and Find Full Text PDF

Eutrophication can induce hypoxia/anoxia and rich organic matter at the sediment-water interface in surface waters. When eutrophic waters are impacted with mercury (Hg) pollution, methylmercury (MeHg) production ability (MPA) of surface sediment would increase and more MeHg might be produced. To tackle this risk, this study firstly collected samples of surface sediment and overlying water from a typical eutrophic lake-Taihu Lake.

View Article and Find Full Text PDF

The stability of pure organic room-temperature phosphorescent (RTP) materials in air has been a research hotspot in recent years. Without crystallization or encapsulation, a new strategy was proposed to obtain self-stabilized organic RTP materials, based on a complete ionization of a photo-induced charge separation system. The ionization of aromatic phenol 4-carbazolyl salicylaldehyde (CSA) formed a stable H-bonding anion-cation radical structure and led to the completely amorphous CSA-I film.

View Article and Find Full Text PDF

Methylmercury (MeHg) in sediment is difficult to be determined due to its low concentration and binding compounds like sulfide and organic matter. Moreover, wet sediment samples have been suggested to behave differently from certified reference materials in MeHg analysis. Optimal pretreatment procedure for MeHg determination in sediments has not been ascertained and whether the procedure could apply to sediment samples with complex matrix merits further research.

View Article and Find Full Text PDF

Neural embeddings are widely used in language modeling and feature generation with superior computational power. Particularly, neural document embedding - converting texts of variable-length to semantic vector representations - has shown to benefit widespread downstream applications, e.g.

View Article and Find Full Text PDF

Algal blooms in eutrophic waters often induce anoxia/hypoxia and enhance methane (CH) emissions to the atmosphere, which may contribute to global warming. At present, there are very few strategies available to combat this problem. In this study, surface oxygen nanobubbles were tested as a novel approach for anoxia/hypoxia remediation and CH emission control.

View Article and Find Full Text PDF

The academic world is driven by scholarly research and publications. Yet, for many fields, the volume of published research and the associated knowledge base have been expanding exponentially for decades. The result is that scientists are literally drowning in data and information.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a product of cumulative genetic, epigenetic, somatic, and endocrine aberrations. Identifying the differentially expressed genes (DEGs) in HCC is of critical importance for diagnosis and treatment. The purpose of the present study was to screen the key genes associated with hepatocellular carcinoma and to investigate the functions underlying hepatocellular carcinoma progression.

View Article and Find Full Text PDF

Central Asia is a region that has a large land mass, yet meteorological stations in this area are relatively scarce. To address this data issues, in this study, we selected two reanalysis datasets (the ERA40 and NCEP/NCAR) and downscaled them to 40 × 40 km using RegCM. Then three gridded datasets (the CRU, APHRO, and WM) that were extrapolated from the observations of Central Asian meteorological stations to evaluate the performance of RegCM and analyze the spatiotemporal distribution of precipitation and air temperature.

View Article and Find Full Text PDF